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Unitary Fermi gas
Let us consider a gas of fermions with two spin components (o =1, ).

The system is dilute if the effective radius rg of the inter-atomic potential is
much smaller than the average interparticle separation d = n~1/3, namely

nr8<<1, (1)

where n = g —+ n| IS the total number density of the Fermi gas.

The unitarity regime of this dilute Fermi gas is the situation in which the
s-wave scattering length a of the inter-atomic potential greatly exceeds the
average interparticle separation d = n—1/3, thus

nla®>1. (2)

In few words, the unitarity regime of a dilute Fermi gas is characterized by

ro < n 13 <« |a| . (3)
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The many-body Hamiltonian of a two-component Fermi system is given by
A2
_Z< -I-U(rz))—l-z ( -I—U(rj)>—|—ZV(rz—r), (4)

J 1,]

where U(r) is the external confining potential and V(r) is the inter-atomic
potential. Here we consider Ny = N, .

The inter-atomic potential of a dilute Fermi gas can be modelled by an
attractive square well potential:

vy ={ 50 150 Q

By varying the depth Vy of the potential one can change the value of the
S-wave scattering length a, which for this potential is given by

tan(rgv/mVy/h)
a=r1rg|1l— : (6)
rovmVp/h
For rog/mVy/h < /2 the potential does not support bound state and a < 0.
For rg/mVgy/h > w/2 appears a bound state of binding energy eg and a > 0.
At rogv/mVpy/h = n/2 one has eg = 0 and a = +oo.




The unitarity limit corresponds to

a = to0. (7)
Under this condition the Fermi gas is called unitary Fermi gas.

The crossover from a BCS superfluid (a < 0) to a BEC of molecular pairs
(a > 0) has been investigated experimentally*, and it has been shown that
the unitary Fermi gas (Ja| = oo) exists and is (meta)stable.

The detection of quantized vortices under rotationT has clarified that the
unitary Fermi gas is superfluid.

The only length characterizing the uniform unitary Fermi gas is the average
distance between particles d = n~1/3. In this case the energy per particle
must be

2
(i) =62 (3PP = D ep, (®)

with e Fermi energy of the ideal gas and £ a universal unknown parameter
(Monte Carlo calculations suggest £ ~ 0.4).
*K.M. O’'Hara et al., Science 298, 2179 (2002).

fM.W. Zwierlein et al., Science 311, 492 (2006); M.W. Zwierlein et al., Nature (London)
442, 54 (2006)



Extended Thomas-Fermi density functional

The Thomas-Fermi (TF) energy functional® of the unitary Fermi gas trapped
by an external potential U(r) is

3 h?
E = / B3r n(r) |22 3x2)2/30(0)23 L U®)| . (9)
52m
with n(r) the local density. The total number of fermions is
N = /d3r n(r) . (10)
By minimizing Err one finds
h2
63022 Pn(@)?P +U@) =7, (11)
m
with © chemical potential of the non-uniform system. In this way
(2m)3/2 3/2
n(r) = —U(r : 12
(0) = 35 enayaa A= U@ (12)

*S. Giorgini, L.P. Pitaevskii, and S. Stringari, Rev. Mov. Phys. 80, 1215 (2008).



The TF functional must be extended to cure the pathological TF behavior
at the surface.

We add to the energy per particle the term
h? (Vn)? \ h2 (V+/n)?

13
8m n2 2m n (13)

A

Historically, this term was introduced by von Weizsacker! to treat surface
effects in nuclei. Here we consider A as a phenomenological parameter ac-
counting for the increase of Kkinetic energy due the spatial variation of the
density.

There are also multi-orbital density functionals for unitary Fermi gas:

— the Kohn-Sham density functional of Papenbrock,

Phys. Rev. A 72, 041603 (2005);

— the Bogoliubov-de Gennes superfluid local-density approximation (SLDA)
of Bulgac, Phys. Rev. A 76, 040502(R) (2007).

fC.F. von Weizsdcker, Z. Phys. 96, 431 (1935).



The new energy functional, that is the extended Thomas-Fermi (ETF) func-
tional of the unitary Fermi gas, reads

2 2
B = / &3r n(r) [,\ gm(z"’zgé) §§E_(37r2)2/3n(r)2/3 n U(r)} . (4)

By minimizing the ETF energy functional one gets:

2
[ /\h—v +é— <3w2>2/3n<r>2/3+v<r>] Jn(@) =f n(r).  (15)

This is a sort of stationary 3D nonlinear Schrodinger equation (NLSE).

To determine ¢ and A we look for the values of the two parameters which
lead to the best fit of the ground-state energies obtained with the fixed-node
diffusion Monte Carlo (FNDMC) method? in a harmonic trap U(r) = mw?r2/2.
After a systematic analysis [L.S. and F. Toigo, Phys. Rev. A 78, 053626
(2008)] we find

¢ = 0.455 and A=0.13

as the best fitting parameters in the unitary regime. See the next figure.
tJ von Stecher, C.H. Greene and D. Blume, Phys. Rev. A 77 043619 (2008)
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Ground-state energy E for the unitary Fermi gas of N atoms under harmonic
confinement of frequency w. Energy in units of hw. [Adapted from L.S. and
F. Toigo, Phys. Rev. A 78, 053626 (2008)]



Having determined the parameters £ and A we can now use our single-orbital
density functional to calculate various properties of the trappeed unitary Fermi
gas.

We calculate numerically (by solving with a finite-difference Crank-Nicolson
method the stationary 3D NLSE) the density profile n(r) of the gas in a
iIsotropic harmonic trap

U(r) = %m&(x? o2 4 22) (16)

We compare our results with those obtained by Doerte Blume$ with her
FNDMC code. For completeness we consider also the density profiles obtained
by Aurel Bulgac1T using his multi-orbital density functional (SLDA).

SD. Blume, J. von Stecher, C.H. Greene, Phys. Rev. Lett. 99, 233201 (2007); J. von
Stecher, C.H. Greene and D. Blume, Phys. Rev. A 77 043619 (2008); D. Blume, unpub-
lished.

YA. Bulgac, Phys. Rev. A 76, 040502(R) (2007).
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Unitary Fermi gas under harmonic confinement of frequency w. Density
profiles n(r) for N (even) fermions obtained with our ETF (solid lines),
Bulgac's SLDA (dashed lines) and FNDMC (circles).

Lengths in units of

ag = \/h/(mw). [L.S., F. Ancilotto and F. Toigo, to be published in Laser

Phys. Lett.]



| | | | ) ) |
q..5 1.75 2 2.25 2.5 2.75 3

Zoom of the density profile n(r) for N = 20 fermions near the surface obtained
with our ETF (solid lines), Bulgac's SLDA (circles) and FNDMC (circles).

Lengths in units of ay = \/h/(mw). [L.S., F. Ancilotto and F. Toigo, to be
published in Laser Phys. Lett.]




Extended superfluid hydrodynamics

Let us now analyze the effect of the gradient term on the dynamics of the
superfluid unitary Fermi gas.

At zero temperature the low-energy collective dynamics of this fermionic
gas can be described by the equations of extended™* irrotational and inviscid

hydrodynamics:

g—j+v-<nv>=o, (17)
0 [? V2y/n . m o _
mov V=2 S (i) + U + Do) =0, (18)

where u(n; &) = fep is the bulk chemical potential, with e = k2(372n)1/3/(2m)
the Fermi energy.

They are the simplest extension of the equations of superfluid hydrodynamics
of fermions’, where \ = 0.

*Quantum hydrodynamics of electrons: N. H. March and M. P. Tosi, Proc. R. Soc. A 330,
373 (1972); E. Zaremba and H.C. Tso, PRB 49, 8147 (1994).

fS. Giorgini, L.P. Pitaevskii, and S. Stringari, Rev. Mov. Phys. 80, 1215 (2008).



The extended hydrodynamics equations can be written in terms of a time-
dependent NLSE, which is Galilei-invariant.*

In fact, by introducing the complex wave function

P(r,t) = /n(r,t) 000 (19)

which is normalized to the total number N of superfluid atoms, and taking
into account the correct phase-velocity relationship

v(r,t) = %V@(r,t) : (20)

where 6(r,t) is the phase of the condensate wavefunction of Cooper pairs,
the equation

ﬁQ V2|¢|
, 21

IS strlctly equivalent to the equations of extended hydrodynamics.

zh =~ —v2 + 20U (r) + 2p([%;€) + (1 - 4N, —

IF. Guerra and M. Pusterla, Lett. Nuovo Cim. 34, 351 (1982); H.-D. Doebner and G.A.
Goldin, Phys. Rev. A 54, 3764 (1996).



The extended hydrodynamics equations are the Euler-Lagrange equation of
the following Lagrangian density

(22)

2 2
L= (e + —<ve>2 FU@ + (i) 40 VD ) ,

which depends on the total number density n(r,t) and the phase 6(r,t) [L.S.
and F. Toigo, Phys. Rev. A 78, 053626 (2008)].

In the case A = 0 it is called the Popov Lagrangian of superfluid hydrodynam-
ics [V.N. Popov, Functional Integrals in Quantum Field Theory and Statistical
Physics (Reidel, Dordrecht, 1983)].

Setting, as previously,

o(r,t) = \/n(r,t) 1) (23)

the extended Popov Lagrangian (22) is equivalent to the following one:

L= v (i 02 U@ -0+ =N (TP (29)



Sound velocity and collective modes

From the equations of superfluid hydrodynamics one finds the dispersion
relation of low-energy collective modes of the uniform (U(r) = 0) unitary

Fermi gas in the form
Y
— = \/EIUF ’ (25)
q 3

where €2 is the collective frequency, ¢q is the wave number and

op = || °F (26)

iIs the Fermi velocity of a noninteracting Fermi gas.

The equations of extended superfluid hydrodynamics (or the superfluid NLSE)
give [L.S. and F. Toigo, Phys. Rev. A 78, 053626 (2008)] also a correcting

term, i.e.
9 . /é 3\ hq 5
q — 3UF\/1 + € (2mvp) 9 (27)

which depends on the ratio \/¢.




In the case of harmonic confinement
1
U(r) = EmwQ'rQ (28)

we study numerically the collective modes of the unitary Fermi gas by in-
creasing the number N of atoms.

By solving the superfluid NLSE we find that the frequency 2g of the monopole
mode (I = 0) and the frequency 21 dipole mode (I = 1) do not depend on
N

QO = 2w and Q1 =w, (29)

as predicted by Y. Castin [Comptes Rendus Physique 5, 407 (2004)].

We find instead that the frequencies 25 and 23 of quadrupole (I = 2) and
octupole (I = 3) modes depend on N and on the choice of the gradient
coefficient A.
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Quadrupole frequency 25 of the unitary Fermi gas (¢ = 0.455) with N atoms
under harmonic confinement of frequency w. Three different values of the
gradient coefficient \. For A =0 (TF limit): Q2o = +v2w. [L.S., F. Ancilotto
and F. Toigo, to be published in Laser Phys. Lett.]
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Octupole frequency 23 of the unitary Fermi gas (£ = 0.455) with N atoms
under harmonic confinement of frequency w. Two different values of the
gradient coefficient \. For A =0 (TF limit): Q3 = v3w. [L.S., F. Ancilotto
and F. Toigo, to be published in Laser Phys. Lett.]



Conclusions

We have introduced an extended Thomas-Fermi (ETF) functional for the
trapped unitary Fermi gas.

ETF functional be used to study ground-state density profiles in a generic
external potential U(r).

We have also introduced a time-dependent version of the ETF functional:
the extended superfluid hydrodynamics.

Extended superfluid hydrodynamics can be applied to investigate collective
modes of the unitary gas in a generic external potential U(r).

Our extended hydrodynamics has been recently used to study the tran-
sition from multi vortices to a giant vortex in quadratic-quartic potential
by Alberto Cetoli and Emil Lundh [Phys. Rev. A 80, 023610 (2009)].



