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Bose-Einstein Condensation and Gross-Pitaevskii equation

The N-body stationary Schrodinger equation

HW(ry,..,ry) =€ WU(ry,...,ry), (1)
where
N
-y [ TG UG)| + Y V) (2)
: 7,<J

is the N-body Hamiltonian, can be obtained by minimizing the energy func-
tional

E[V] = /w*(rl,...,rN)ﬁw(rl,...,rN) d3rq..d3ry (3)

with the constraint

/|\U(r1, ...,rN)|2 d3r1...d3rN — 1. (4)



In the case of a Bose-Einstein condensate (BEC), all identical bosons are in
the same single-particle quantum state ¥ (r). It is quite natural to write the
N-body wave function of a BEC as

W(ry,...,ry) = ¢(r1) ... ¥(ry) . (5)

By inserting this wave function in the energy functional, it becomes

Bl = N [0 |- 1924 00| vr) & (6)
+ NIV =) [ B@PRREDPY ) dr i (7)
In the case of a dilute BEC, the inter-atomic interaction can be taken as
V(r,r) =G §(r —1'), (8)
where
o Arhas (9)
m

IS the inter-atomic strength with as the s-wave scattering length fixed by
experiments. This potential is called Fermi pseudo-potential.




Many experiments have been devoted to the study of dilute and ultracold
Bose-Einstein condensates (BECs) with positive s-wave scattering length

as > O 9 (10)

which implies an effective repulsion between atoms (87Rb, 23Na). There are
instead few experiments with negative s-wave scattering length

a'8<o7 (11)

which implies an effective attraction between atoms.

’Li atoms have a negative scattering length

as~—14-10"10 m. (12)
BECs with “Li atoms have been studied at Rice Univ.* and ENST.

Recently an attractive BEC with 8°Rb atoms has been investigated at JILAY
by using a Feshbach resonance.

*K.E. Strecker et al., Nature 417, 150 (2002).
fL. Khaykovich et al., Science 296, 1290 (2002).
IS.L. Cornish et al., PRL 96, 170401 (2006).



By using the Fermi pseudo-potential, the energy functional of the BEC is
further simplified and reads

% 1
Bly) = N [ *(x) [—%VQ +U@) + JGN(N - 1>|¢<r>|2] () dr.  (13)
By minimizing this single-particle energy functional with the constraint

[1w@)? dr =1 (14)

one obtains the so-called Gross-Pitaevskii equation

- 2m

where p is the Lagrange multiplier fixed by the normalization. Usually one
sets N instead of N — 1 for a large number of particles. Note that u satisfies
the equation

2
[ g2 +U(r) + G(N — 1)|¢(1‘)|2} P(r) = p P(r), (15)

OF
- . 16
b=y (16)

Thus, p is the chemical potential of the system.



Gaussian variational approach

The stationary properties of a dilute Bose-Einstein condensates (BEC) are
well described by the Gross-Pitaevskii equation (GPE), given by

47rh2a3N

2
[ P02 4 U + B()2] $(@) = 1 w(r) (17)

where ¥ (r) is the macroscopic wave function of the BEC, here normalized to
one, i.e.

/|¢(r)|2 Br=1. (18)

In the GPE u is the chemical potential, U(r) is the external trapping potential,
as 1S the s-wave scattering length and N is the number of condensed atomic
bosons.

The GPE can be obtained by minimizing the following energy functional

27Th asN

= | { V)2 + U@ )2 +

with the constraint of Eq. (18).

lw(r>|4} (19)



Let us suppose that the external trap is a spherically-symmetric harmonic
potential

1 1
U(r) = —me ( + 42+ 2 ) = —meQ_ITQ : (20)
2 2
A reasonable variational ansatz for ¢ (r) is a Gaussian wave function
1 2
p(r) = exp ( ) , (21)
7w3/463/%53/2 2a%;02
where
h
af = \[—— (22)
mw g

IS the characteristic harmonic length and o is the variational parameter, that
is the scaled width of the BEC.

By inserting this trial wave function in the GPE energy functional and inte-
grating over spatial coordinates one finds the effective energy

_ 2F 31 1
B=—2 =274 02+r—, (23)
th 20‘
which is a function of the variational parameter o, with I = \/gM the

. . afg
Interaction strength.



The best choice of o is obtained by minimizing the energy E(o), i.e.

OF 1 3 1
oo o3 T30 o4 (24)
Obviously ¢ must also satisfy the condition
O2E
—— > 0. 25
502 (25)
It follows that
o>1 for >0,
while
ce<o<1l for —-T.<Il<O0,
with o. = 1/51/4 ~ 0.67 and . = 4/5%/4 ~ 0.53.
Thus, for as < O it exist a critical strength
las|N \/ﬁ 4
=, ,/—— ~ 0.67 26
apg 255/4 (26)

above which the local minumum of the energy does not exist anymore. Above
this critical strength there is the so-called collapse of the condensate. For
"Li atoms of Rice Univ. experiment: N, ~ 1300.
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Let us now consider an attractive BEC (as < 0) with an anisotropic harmonic
trapping potential

U@) = mw? (2 + v?) + Smw?s?, (27)

By using the transverse harmonic length

h
a)] =/ ——, (28)
mw |

as unit of length, and Aw ;| as unit of energy, the scaled GPE energy functional
reads

_ (i1 2
E—/{§|V¢(r)| +

with

2
%@2 +9°) + %22] ()% + 2m|¢(r)|4} dr, (29)

A= Wz trap anisotropy
W
|a3|N

a|

v = interaction strength.



To study this problem we use the Gaussian ansatz’
1 (z° +y°) 2°
v(0) =375 exp{— N
w2/ %on 20 2n
where o and n are, respectively, transverse and axial widths. Inserting this
ansatz into the energy functional, we obtain the effective energy

(30)

A2 2 1
E——‘|‘0 +—+—"72 \/7’)’7- (31)
T 04T
We look for values of ¢ and n that minimize energy E and get
2 1

——+0+\/7 Tzoa (32)

T  0°1n

> 1
X242 s =0, (33)

77 T (7 77

These equations give local minima only if the curvature of E(n,o) is positive.

Remarkably, there is a local minumum also with A = 0, i.e. also without
axial confinement: this is the so-called bright soliton. This bright soliton
collapses at a critical strength ~. ~ 0.78.

§_.S., A. Parola, and L. Reatto, PRA 66, 043603 (2002).



We can also study the dynamics of the attractive BEC by using the La-
grangian’

1 _
L =4+ 57‘72 — E(o,m) . (34)
The equations of motion are
. 1 /2 1

0——3—|—0—|— —szo, (35)

o ™ o°n

. 1 /2 1

n ™ oTn

From these equations one can quite easily derive the frequencies €27 and <2,
of small oscillations around the local minima.

(21 and €2, are the frequencies of breathing modes along radial and axial
direction.

IL.S., Int. J. Mod. Phys. B 14 405 (2000).
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Gaussian variational approach to the attractive BEC. Top: Widths ¢ and n. Bottom:
Breathing frequencies wi and ws. All vs interaction strength . Trap anisotropy: black solid
line (A = 0); red dotted line (A = 0.01); green dashed line (A = 0.1).



Nonpolynomial Schrodinger equation

To investigate the dynamics of a BEC we start from the time-dependent 3D
GPE given by

Anh2asN
"2 4 () + 2T

2m m

iﬁ%iﬁ(r,t) = [— Iw(r,t)IQI P(r, 1) , (37)

where (r,t) is the wave function of the BEC. Let us suppose that the
trapping potential is

U@ = mw? (P +47) + V() (38)

By using the transverse harmonic length

Iy (39)
me_

as unit of length, and Aw; as unit of energy, the scaled 3D GPE reads

0 1 1
i p(r,t) = —EVQ + E(xQ + y2) + V(2) + 2ng|v(r, t)|?| w(x,t) , (40)

where

2asN
g = s : (41)
a |




The 3D GPE is the Euler-Lagrange equation
oL doL oL
— -—V——=20, (42)
oY  dtoy oV
of the following Lagrangian density

£= (0, 8) (i2 4+ 292) 9(r, ) == @24y [ (x, 2=V ()| (x, ) =g o (r, £)[*
ot 2 2 (43)

We remind that the Euler-Lagrange equation (42) is obtained by extermizing
the action functional

AWl = [dr L= [ dt & £, Ve, 9), (44)

where

L= [d® (s, Ve, 9) (45)

is the full Lagrangian obtained from the Lagrangian density.



We consider a semi-Gaussian variational ansatz

$2 2
WD = g e {‘(2(,(:3)2)} F&0 (“40)

Inserting this expression into the 3D Lagrangian density and integrating over
x and y variables, we obtain an effective 1D Lagrangian density

2 2, 2
[ = f(zt>[z—f<zt>+13——v<z>——( e (zt>> olLC g”f(z
| (47)

The two Euler-Lagrange equations of this effective Lagrangian density with
respect to o(z,t) and f(z,t) are

o(z,1) = (1 +glf(5,0) )1/ * (48)
8 [ 107 1 |f(z,1t>|2
(49)

Eqa. (49) with Eq. (48) is the so-called nonpolynomial Schrodinger equation
(NPSE).

IL.S., A. Parola, and L. Reatto, PRA 65, 043614 (2002).



Under the weak-coupling condition ~|f(z,t)|? < 1 one finds

o(z,t) ~ 1, (50)
and the NPSE becomes the familiar 1D GPE (cubic nonlinearity)
G, 192 2
io f () = | =S5+ V() +glf (0P| £(z,10) (51)

Under the weak-coupling condition ~|f(z,t)|2 > 1 one finds instead

a(z,t) ~ g4 f(z,8)|1/2. (52)

and the NPSE becomes a 1D nonlinear Schrodinger equation with quadratic
nonlinearity
1 92

e, 3
io F(2t) = | =525+ V() + 59" 12, 0] f(21) (53)



Exact solutions with negative scattering length
Let us consider the self-focusing (as < 0) 1D GPE without external potential,
i.,e. V(z) =0. It is given by

1 62

.0 _ >
0 = |52+ V() — 2017 0P| 1.0 (54)

where v = —|g|/2.

This equation admits a self-localized stationary solution

F() = |2 sech? (2) exp (—it) (55)

where © = —242. This is the ground-state of the attractive 1D GPE with
V(z) = 0 and there is no collapse.

This solution is called bright soliton because the 1D GPE with V(z) = 0
admits also the shape-invariant time-dependent solution

f(z,t) = \/g sech? (v(z —vt)) exp (iv(z — vt)) exp (i(v2 — ,u)t) : (56)

where the center-of-mass velocity v is arbitrary (it does not depend on system
paramters).



et us now consider the attractive NPSE with V(z) = 0. It can be written as

o 2 . 2
D f G = |2 04 GO g, gy (57)

2
20271 - 29| f (2, 1)
and admits the stationary self-localized solution

f(z,t) = ¢(z) exp (—iut) , (58)

where ¢(z) is given by the implicity formula

[ 1 1 — 22 — 1 1 — 2~vh2 —
\/Ez = ,/—Arctanh J \/ 7¢ H — —tan_l J \/ 7¢ H
1—p 1—p 1+ u 14+

(59)
with p given by the implicity formula 2y = %(QM + 1)v/1— .
This 3D bright soliton exists up to the critical strength
as|N 2
%=CS')=—. (60)
a| c 3

Above this value there is the collapse of the bright soliton.



Stationary 3D bright soliton: NPSE gives practically the same results of

the 3D GPE.**
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Axial density profile p(z) of the BEC bright soliton: 3D GPE (full line), NPSE (dotted line),
1D GPE (dashed line). v = |as|N/a, .

*L.S., A. Parola, and L. Reatto, PRA 66, 043603 (2002).



Simulating the ENS experiment with bright solitons

In the ENS experiment!™ with bright solitons made of “Li atoms the longitu-
dinal potential

V(z) = %wf% : (61)

is expulsive (inverted parabola) because

wy = 2L X 78 Hz (62)

IS an imaginary longitudinal frequency. In the experiment the s-wave scatter-
ing length as of "Li atoms is modified by the Feshbach-resonance technique.

We have quite succesfully simulated this experiment by using the NPSE.

ITL. Khaykovich, F. Schreck, G. Ferrari, T. Bourdel, J. Cubizolles, L. D. Carr, Y. Castin, C.
Salomon, Science 296, 1290 (2002)

LS., PRA 70, 053617 (2004).



Density of the “Li BEC in the expulsive potential obtained by solving the NPSE. The BEC
cloud propagates over 1 mm. Case with a; = 0 (ideal gas). There are N = 4 x 103 atoms.
Six frames from bottom to top: t =2 ms, t =3 mMs,t=4ms,t=5ms,t=6mMs, t=7

ms. Red color corresponds to highest density.



Density of the “Li BEC in the expulsive potential obtained by solving the NPSE. The BEC
cloud propagates over 1 mm. Case with as = —0.21 nm (“bright soliton”). There are
N = 4 x 103 atoms. Six frames from bottom to top: t=2ms, t=3ms, t=4 ms, t=2>5

ms, t =6 ms, t =7 ms. Red color corresponds to highest density.



t [ms]

Root mean square size of the longitudinal width of the BEC as a function of the propagation
time t. The filled circles are the experimental data of ENS experiment. The dashed line is
the ideal gas (as = 0) curve. The solid line is obtained from the numerical solution of the
NPSE.



Conclusions

The Gaussian variational approach can be useful to study the GPE.

The NPSE, based on a semi-Gaussian approach, is also better.

BECs with negative scattering length show interesting properties:
— collapse above a critical strength;
— bright soliton solutions.

1D GPE and NPSE with attractive interaction admit exact analitical so-
lutions: bright solitons.

By using 3D GPE and NPSE we have succcesfully simulated the only two
experiments (Rice Univ. and ENS) on BEC bright solitons (more details
on request).

THANKS!!



