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Two-site Bose-Hubbard model

A system of N interacting bosons confined by an asymmetric double-well
potential can be described by the two-site Bose-Hubbard model®

N U U~ o A A
A = —J(alar + akar) + S [ML(RL — 1) + Rk — 1)] + %(NL —Rr) (1)

with J > 0 the tunneling (hopping) energy, U the boson-boson interaction, and
€ the on-site energy asymmetry.

Semiclassical (mean-field) dynamics.

Taking the expectation value of the Heisenberg equations on Glauber

coherent states, after defining (3;(t)) = /N;(t) €’%®) one obtains?
2J z(t)

—2J/1— 2(t)2sin(6(t)) (3)

where 6(t) = Or(t) — 0.(t) is the relative phase and z(t) = (N.(t) — Nr(t))/N
is the population imbalance. Here N = Ny (t) + Ngr(t) and (N;(t)) = N;(t).

hz(t)

M. Lewenstein, A. Sanpera, V. Ahufinger, Ultracold atoms in optical lattice (Oxford Univ,
Press 2012).
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Semiclassical approximation

Introducing the canonical momentum

pa(t) = " 2(2) *)

the equations of motion of the first slide can be regarded as the canonical
Hamilton equations for

V) 4
H= h2p§+h JN\/lprgcos(G) (5)

For |U|/J > 1/N, we get the semiclasical Josephson Hamiltonian®

U,
H, = 72 Pe + hpg JIN cos(6) (6)

that is the key ingredient for our semiclassical analysis both at zero and finite
temperature T.

3K. Furutani, J. Tempere, LS, Phys. Rev. B 105, 134510 (2022).



Semiclassical approximation

For 1/N <« U/J < N, the semiclassical dynamics of H, describes small
oscillations around z = 0 and 8 = 0 with Josephson frequency

wy = 2%]'”\/ . (7)

At low energies the distribution of quantum-thermal states is essentially that of
an harmonic oscillator with Josephson frequency w,, which differs from the
Boltzmann distribution by the fact that the temperature T of the bath is

replaced by*
B hw,y hw,y
Tetr = ks coth (2kBT) . (8)

This provides us with a semiclassical approximation for the thermal averages
of observables:

" 1 hN /2 L
(0) == / dpe/ d6 O(ps, ) e Hi(po,0)/ (kg Terr) (9)
z —hN/2 -7

*K. Furutani and LS, AAPPS Bull. 33, 19 (2023).



Exact diagonalization: Thermal equilibrium

At fixed N, the di:agonalization5 of the (N 4+ 1) x (N + 1) matrix associated to
the Hamiltonian H gives N + 1 eigenvalues E, and N + 1 eigenstates |E,).
At thermal equilibrium with a bath of temperature T the density matrix reads

N N
Z /6D ENVEn | =" pygli, N—i)(j,N—j|  (10)
n=0 i,j=0
where | E,) =2V i, N — i) with |i, N — i) = |i)¢|N — i), and
1 N
—E,/(k T (n)
PU:§§e RGO (11)

The diagonal elements p; = (|ci[?) = SV, |c )|2e=En/(8T) ) Z represent the
average weights of the Fock states | i, N — i) in the statistical ensemble.
Thermal averages are computed as

N

(O)=Tr[pOl =Y ps(i N=i|Oj,N~j) (12)

i,j=0

5G. Mazzarella, LS, A. Parola, F. Toigo, Phys. Rev. A 83, 053607 (2011).



Exact diagonalization: Thermal equilibrium
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Thermal average p; = (|c;|?) of Fock weights as a function of i/N , plotted
for N = 50 and three values of U/J: 1 (solid orange line), 0 (dashed green
line), —0.2 (dashed-dotted cyan line) at different temperatures T. Left:

e/J =0; right: ¢/J =0.2.



Exact diagonalization: Entanglement entropy

The entanglement between the two wells can be characterized® in terms of the
reduced density matrices p (r) = Trr(y) (7],

N
p Z pdlag (13)
n=0

where p, = e_E"/(kBT)/Z and

pdlag Z|C ||IN71><IN71| (14)
The entanglement entropy S = Sin[p.] = Swn[pr] is given by
N
Se == (al®) In((Jal*) € [0, In(N +1)] (15)
i=0

that is the von Neumann entropy S,y of the reduced density matrix j,, and
also of pg.

SM. Le Bellac, A Short Introduction to Quantum Information and Quantum Computation
(Cambridge Univ. Press, 2006).



Exact diagonalization: Entanglement entropy

N=20

0 i i i

3r { ksT/J =20
kgT/J = 10
kzT/J = 0

U/

Entanglement entropy Sg as a function of U/J, plotted for N = 20 and three
values of kg T /J: 0 (solid blue line), 10 (dashed-dotted green line), 20 (dashed
orange line). Upper panel: ¢/J = 0; lower panel: ¢/J = 3.



Coherence visibility: Exact vs semiclassical

The coherence of our system can be characterized in terms of the quantity

 2(a]4r)
a= /Lv (16)

called coherence visibility.” This is related to the occupation of the
single-particle ground state (condensate fraction) by

At a
ENE] l+a
<f;V°> == (17)

where 89 = (4, + 4r)/v2 and 41 = (4. — 4r)/V2.

Semiclassical method
By using the semiclassical approach, we get the quite simple formula

_ h(IN/(ks Terr))

o = (cos(f)) = To(IN (ks Tar)) (18)

where I,(x) is the n-th modified Bessel function of the first kind.

L. Pitaevskii and S. Stringari, Phys. Rev. Lett. 87, 180402 (2001).



Coherence visibility: Exact vs semiclassical
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Coherence visibility « for ¢ = 0 as a function of kg T/JN, plotted for N = 20
(left panel) and N = 100 (right panel), and three values of U/JN: 0.1 (cyan

circles), 0.5 (green squares), 1 (orange triangles). The continuous lines are the
corresponding semiclassical result.



Coherence visibility: Exact vs semiclassical
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Coherence visibility « for ¢ = 0 as a function of U/JN, plotted for N = 20
and three values of kg T /JN: 0 (solid blue line), 0.2 (dashed-dotted green
line), 0.5 (dashed orange line).



Coherence visibility: Exact vs semiclassical

Introducing a small nonzero asymmetry energy ¢, the coherence visibility o at
U = 0 is significantly reduced both at zero and finite temperature T, while it
remains almost unaffected for |U|/JN > 0.

In the repulsive regime the visibility o becomes a non-monotonic function of
the interaction strength U at all temperatures (including T = 0), showing an
initial increase before decreasing asymptotically to zero.

In the attractive regime the visibility o remains a monotonically decreasing
function of the modulus of the interaction strength.



Conclusions

e We have characterized the thermal state of a bosonic Josephson junction
by means of complementary observables (entanglement entropy and
coherence visibility), analyzing their dependence on the system
parameters, showing how interparticle interaction, finite temperature, and
on-site energy asymmetry affect their properties.

e We have presented a semiclassical description of the strong tunneling
regime, where thermal averages may be computed analytically using a
modified Boltzmann weight involving an effective temperature.

e The semiclassical description may be applied

* to describe thermal properties of more complicated bosonic junctions
(dipolar interactions, multi-component);
* to investigate quantum dissipative systems.

e Our results are published in the paper:
C. Vianello, M. Ferraretto, and LS, Phys. Rev. A 111, 063310 (2025).
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