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Schrödinger cats in double-well potentials (I)

The study of neutral atoms trapped with light is a very hot topic of
research.

Changing the intensity and shape of the external optical lattice, it is now
possible to trap atoms in very different configurations. One can have
many atoms per site bit also few atoms per site.



Schrödinger cats in double-well potentials (II)

Dilute identical bosonic atoms can be described by a quantum field
operator ψ̂(r, t) which satisfies the Heisenberg equation of motion

i~
∂

∂t
ψ̂(r, t) =

[
− ~2

2m
∇2 + U(r) +

4π~2as
m
|ψ̂(r, t)|2

]
ψ̂(r, t) , (1)

where U(r) is the external potential and as is the s-wave scattering
length of the inter-atomic potential.
We have theoretically studied static and dynamical properties of ultracold
bosonic atoms in the following external potential

U(r) = VDW (x) +
1

2
mω2
⊥(y2 + z2) , (2)

where VDW (x) is a double-well potential, by adopting the following ansatz

ψ̂(r, t) =
(

ΦL(x) âL(t) + ΦR(x) âR(t)
) √mω⊥√

π~
e−mω⊥(y2+z2)/(2~) (3)

where âj and â+
j are respectively the annihilation and creation operators

of bosons in the site j (j = L,R =Left,Right).



Schrödinger cats in double-well potentials (III)

In this way we have investigated the macroscopic quantum tunneling
of neutral atoms from one well to the other well. This is the analog of
the Josephson effect of superconductivity (Josephson junction).
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Thus the system is well described by the two-site Bose-Hubbard
Hamiltonian

Ĥ = −J
(
â+
L âR + â+

R âL
)

+
U

2

(
N̂L(N̂L − 1) + N̂R(N̂R − 1)

)
(4)

where Nj = â+
j âj is the number operator of site j . Here J is the hopping

(tunneling) energy and U is the on-site energy.



Schrödinger cats in double-well potentials (IV)

The ground-state of the two-site Bose-Hubbard Hamiltonian with N
bosonic atoms

|GS〉 =
N∑
i=0

c
(0)
i |i〉L ⊗ |N − i〉R (5)

is strongly quantum entangled and characterized by the complex

coefficients c
(0)
j which depend on the ratio U/J. Here |i〉L is the Fock

state of i bosons on the site L and |N − i〉R is the Fock state of (N − i)
bosons on the site R.
The coefficients c

(0)
j are obtained by a direct diagonalization of the

(N + 1)× (N + 1) Hamiltonian matrix Ĥ.



Schrödinger cats in double-well potentials (V)

Square modulus of the coefficients c
(0)
i of the repulsive (U > 0) ground

state. |c(0)
i |2 gives the probability of finding i bosons on the left well and

N − i bosons on the right well. Here ζ = U/J and N is the total number
of bosons. [PRA 83, 053607 (2011)]



Schrödinger cats in double-well potentials (VI)

Square modulus of the coefficients c
(0)
i of the attractive (U < 0) ground

state. |c(0)
i |2 gives the probability of finding i bosons on the left well and

N − i bosons on the right well. Here ζ = U/J and N is the total number
of bosons. [PRA 83, 053607 (2011)].



Schrödinger cats in double-well potentials (VII)

In particular, for U = 0 the ground state |GS〉 is the atomic coherent
state |ACS〉:

|GS〉 = |ACS〉 =
1√
N!

[
1√
2

(
â+
L + â+

R

)]N
|0〉L ⊗ |0〉R . (6)

Instead, for U/J � 1 the ground state |GS〉 becomes is the twin-Fock
state |TF 〉:

|GS〉 → |TF 〉 = |N
2
〉L ⊗ |

N

2
〉R , (7)

while for U/J � −1 the ground state |GS〉 becomes the Schrödinger-cat
state (NOON state) |CAT 〉:

|GS〉 → |CAT 〉 =
1√
2

(|N〉L ⊗ |0〉R + |0〉L ⊗ |N〉R) . (8)

With ultracold atoms it is quite easy to experimentally obtain U < 0 by
using the Feshbach-resonance technique. This is instead very difficult
with superconducting Josephson junctions.



Schrödinger cats in double-well potentials (VIII)

Entanglement entropy S of the ground-state |GS〉 of the two-site
Bose-Hubbard Hamiltonian as a function of the parameter ζ = U/J. Left
panel: attractive bosons (U < 0). Right panel: repulsive bosons (U > 0).
Solid line: N = 20. Dashed line: N = 30. [PRA 83, 053607 (2011)]



Mean-field dynamics of the Josephson junction (I)

The mean-field quantum dynamics of the bosonic Josephson junction is
obtained assuming that the time-dependent many-body state of the
system is given by

|ψ(t)〉 = |αL(t)〉 ⊗ |αR(t)〉 . (9)

where |αj(t)〉 is the Glauber coherent state, i.e. the eigenstate of the
time-dependent destruction operator âj(t):

âj(t)|αj(t)〉 = αj(t)|αj(t)〉 (10)

with complex eigenvalue αj(t) =
√
Nj(t) e iφj (t) and j = L,R.

In the last years, we have adopted this mean-field approach to study
several problems:
– Josephson junctions with spin-orbit coupling [PRA 89, 063607 (2014)]
– Josephson junctions assisted by a cavity field [PRA 91, 023601 (2015)]
– Josephson junctions with atomic losses [PRA 97, 013602 (2018)]



Mean-field dynamics of the Josephson junction (II)

Introducing the the population imbalance

z(t) =
NL(t)− NR(t)

N
(11)

and the relative phase

φ(t) = φL(t)− φR(t) (12)

one can then derive, from the two-site Bose-Hubbard Hamiltonian, the
familiar generalized Josephson equations1

d

dt
z(t) = −2J

~
√

1− z(t)2 sin (φ(t)) (13)

d

dt
φ(t) =

NU

~
z(t) +

2J

~
z(t)√

1− z(t)2
cos (φ(t)) (14)

1A. Smerzi, S. Fantoni, S Giovanazzi, S.R. Shenoy, PRL 79, 4950 (1997).



Mean-field dynamics of the Josephson junction (III)

From a simple linearization of the generalized Josephson equations
around z = 0 and φ = 0 one gets

d2

dt2
z(t) + ω2

Jz(t) = 0 , (15)

where

ωJ =
2J

~

√
1 +

NU

2J
(16)

is the Josephson frequency of the harmonic oscillation of the population
imbalance, and also of the relative phase.
Clearly, for NU/J � 1 (Rabi regime) the frequency becomes ωJ ' 2J/~,
while for NU/J � 1 (Josephson regime) the frequency becomes
ωJ '

√
2NUJ/~.

In any case, assuming a small population imbalance and a small relative
phase we have found a pure harmonic dynamics with no dissipation.



Recent experiment: relaxation without dissipation (I)

In a recent experiment with 87Rb atoms [M. Pigeur et al., PRL 102,
173601 (2018)] the relaxation of Josephson oscillations in the absence
of dissipation has been observed.



Recent experiment: relaxation without dissipation (II)

In this experiment, performed at TU Wien, it has been studied the
non-equilibrium tunnel dynamics of N = 3300 atoms in the Josephson
regime (UN/J � 1) at ultra-low temperature T = 18 nK.
The main results are:

1 Regardless of the initial state and experimental parameters, the
dynamics of the relative phase and atom number imbalance shows a
relaxation to a phase-locked steady state.

2 Due to the fact that dissipative processes are negligible, the authors
of the experiment write that “a microscopic theory compatible with
our observations is still missing”.

3 The experimental data are not compatible with the mean-field
theory based on the generalized Josephson equations. Only including
a phenomenological dissipative term in these equations one
reproduces the observations.



Exact dynamics of the Josephson junction (I)

The exact quantum dynamics of the bosonic Josephson junction can be
obtained assuming that the time-dependent many-body state of the
system is given by

|ψ(t)〉 =
N∑
i=0

ci (t) |i〉L ⊗ |N − i〉R , (17)

where |i〉L is the Fock state of i bosons on the site L and |N − i〉R is the
Fock state of N − i bosons on the site R.
We also impose the normalization condition

N∑
i=0

|ci (t)|2 = 1 . (18)



Exact dynamics of the Josephson junction (II)

The time-dependent Schrödinger equation for the state |ψ(t)〉 is given by

i~
d

dt
|ψ(t)〉 = Ĥ|ψ(t)〉 , (19)

where Ĥ is the two-site Bose-Hubbard Hamiltonian.
From this equation one finds N + 1 coupled ordinary differential equations
(ODEs) for the time-dependent complex coefficients ci (t) of the state

|ψ(t)〉 =
N∑
i=0

ci (t) |i〉L ⊗ |N − i〉R .

For instance, for N = 2 one finds these 3 ODEs

i~
d

dt

c0(t)
c1(t)
c2(t)

 =

 U −
√

2J 0

−
√

2J 0 −
√

2J

0 −
√

2J U

c0(t)
c1(t)
c2(t)

 (20)



Exact dynamics of the Josephson junction (III)
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Exact dynamics of the population imbalance for N = 2 bosons (solid line)
compared with the mean-field (semiclassical) dynamics (dashed line). We
choose J = 10 and U = 1/2 such that NU = 1. The initial conditions are
c0(0) =

√
0.2, c1(0) = 0, c2(0) =

√
0.8.

[S. Wimberger and LS, preliminar results]



Exact dynamics of the Josephson junction (IV)
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Exact dynamics of the population imbalance for N = 3 bosons (solid line)
compared with the mean-field (semiclassical) dynamics (dashed line). We
choose J = 10 and U = 1/3 such that NU = 1. The initial conditions are
c0(0) =

√
0.2, c1(0) = 0, c2(0) = 0, c3(0) =

√
0.8. [S. Wimberger and

LS, preliminar results]



Exact dynamics of the Josephson junction (V)
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Exact dynamics of the population imbalance for N = 5 bosons (red
dashed curve) and N = 500 bosons (yellow dotted curve) with J = 10
and NU = 1.25. For comparison there is also the non-interacting case
where U = 0 (blue solid curve). [S. Wimberger and LS, preliminar results]



Conclusions and open problems

We have analyzed the ground state |GS〉 of the two-site
Bose-Hubbard Hamiltonian, finding that |GS〉 is strongly dependent
on the ratio U/J: atomic coherent state, twin-Fock state, cat state.

We have also compared the exact quantum tunneling dynamics with
the mean-field one in the Rabi regime (NU/J � 1), finding that:
– at small times the mean-field theory is reliable;
– at large times mean-field dynamics predicts a pure harmonic
oscillation while the exact dynamics displays also damping and
revival;
– the damping time TD slightly increases by increasing the number
of bosons N.

We are now trying to compare our exact theoretical results with the
recent experimental data obtained at TU Wien in the Josephson
regime (NU/J � 1).
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