Mean-field and beyond

in the 2D BCS-BEC crossover

Luca Salasnich

Dipartimento di Fisica e Astronomia “Galileo Galilei”, Universita di Padova, Italy

Trento, November 15, 2013

Collaboration with:

Pieralberto Marchetti and Flavio Toigo (Universita di Padova)
Phys. Rev. A. 88, 053612 (2013)



e 6 6 ¢ 6 ¢ ¢

Condensation and superfluidity in 2D systems
2D Fermi gas with pairing

Mean-field

/Zero-temperature

Finite-temperature

Beyond mean-field

Open problems



Condensation and superfluidity in 2D systems

According to the Mermin-Wagner theorem! in a 2D uniform system

one can find true condensation, i.e off-diagonal-long-range-order
(ODLRO), only at zero temperature (T = 0).

Nevertheless, as shown by Hohenberg? the 2D uniform system can have
quasi condensation, i.e. algebric-long-range-order (ALRO), below a
critical finite temperature. This critical temperature is usually identified
with the Berezinskii-Kosterlitz-Thouless temperature® below which the
2D system has a finite superfluidity.
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2D Fermi gas with pairing (1)

We consider a 2D neutral Fermi gas with attractive s-wave
interaction. The partition function Z of the system at temperature T,
in a region of area L2, and with chemical potential & can be written as
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is the Euclidean action functional and £ is given by

where
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with g < 0 is the attractive strength of the s-wave coupling. Notice that
B =1/(kgT) with kg the Boltzmann constant.



2D Fermi gas with pairing (I1)

The Lagrangian density £ is quartic in the fermionic fields 15, but one
can reduce the problem to a quadratic Lagrangian density by introducing
an auxiliary complex scalar field A(r,7) via Hubbard-Stratonovich
transformation*, which gives

z- / Dlibs, ] DIA, A] exp {~Se/h} . (4)
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and the (exact) effective Euclidean Lagrangian density L. reads

where
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*H.T.C. Stoof, K.B. Gubbels, D.B.M. Dickerscheid, Ultracold Quantum Fields
(Springer, Dordrecht, 2009).



2D Fermi gas with pairing (1)

It is a standard procedure to integrate out the quadratic fermionic fields
and to get a new effective action Se which depends only on the auxiliary
field A(r, 7). In this way we obtain

z- / DIA, A] exp {—Sur [} | (7)

where
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We stress that at this level the effective action See is formally exact.



Mean-field (I)

In the mean-field approximation one consider a constant and real gap

parameter, I.e.
A(r,7) = Ao , (10)

and the partition function becomes

Zmf = exp{—Smr/h} = exp{—LBQmr} , (11)
where 5
Q= — ) % [21n(2 cosh(BE,/2)) — B&x] — L2% (12)
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with & = h?k?/(2m) — p and
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Mean-field (II)

The constant and real gap parameter Ay is obtained from

8me
=0 14
which gives the gap equation
tanh 6Ek/2)
— : 1
=13 Z >F. (15)

The integral on the right side of this equation is divergent. However, in
two dimensions quite generally a bound-state energy eg exists. For the
contact potential the bound-state equation is
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Mean-field (I11)

In this way one obtains the regularized gap equation®
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which can be used to study the BCS-BEC crossover by varying the
binding energy €p.

We observe that the binding energy eg can be written as

eg ~ h?/(mayp), where a>p is the 2D s-wave scattering length, such that
arp =~ a,exp(—az/asp) with asp the 3D scattering length and a, the
characteristic length of the transverse confinement.®

>M. Randeria, J-M. Duan, L-Y. Shieh, Phys. Rev. B 41, 327 (1990).
°G. Bertaina and S. Giorgini, Phys. Rev. Lett. 106, 110403 (2011).



Mean-field (V)

From the thermodynamic formula

N=— (m”’f) (18)
O /27

we obtain the equation for the total number of fermions

N = Z (1 — >X tanh (ﬁEk/2)) . (19)

Moreover, the equation for the T = 0 number of quasi-condensed
fermionic atoms’ reads

2
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Zero-temperature properties (1)

At T = 0 the grand potential is given by

m
U = === 1° <u2 + 1 \/uz + A%) , (21)

where the chemical potential © reads

1

p=€F— €8, (22)

with e = wh?n/m the 2D Fermi energy, and the gap parameter Aq is
Instead

Ny = \/2¢erep . (23)
In addition, we find® this nice formula for the condensate fraction
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Zero-temperature properties (1)
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Figure: Upper panel: chemical potential ;v and energy gap Ao as a function of
the binding energy eg of pairs. Lower panel: Bose-condensate fraction Ny /N of
fermionic atoms as a function of the binding energy e¢g of pairs.



Zero-temperature properties (Il

According to Landau® the first sound velocity cs is given by

mc2 — (a—P) | (25)
8” Lz,g

where P is the pressure and S = S/N is the entropy per particle of the
superfluid. Moreover, at zero temperature it holds the following equality

(g_’;)m —n (Z_M)L . (26)

Using the 2D zero-temperature mean-field result
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where e = (mh?/m)n = mv? /2, we finally obtain

VF
Noh

9L.D. Landau, Journal of Physics USSR 5, 71 (1941).
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Finite-temperature properties (I)

One can explicitly calculate the temperature T* at which Ay = 0.
In particular, one obtains!® the following equations

W(T*) = kg T* In (eGF/U‘BT*) - 1) , (29)
W(T*)/@kaT") ¢y p

eg = kg T L exp —/ tanh () ) (30)
Y 0 u

which determine T* and u(T*) as a function of the binding energy €z,
with v = 1.781.

10V/.P. Gusynin, V.M. Loktev, and Sharapov, J. Exp. Theor. Phys. 88, 685 (1999).



Finite-temperature properties (I1)

Figure: Critical temperature T (solid line), critical chemical potential pu(T7)
(dashed line), and zero-temperature chemical potential 14(0) as a function of
the binding energy eg of pairs.



Beyond mean-field (I)

Let us now consider beyond mean-field effects. We have seen that the
exact partition function can be written as

ZZ/D[A,A] exp { —Serr[A, A]/R} (31)

where Se[A, A] is the effective action, which is a functional of the
complex bosonic auxiliary field A(r, 7) of pairing.
We impose that

A(r,7) = (Do + o(r, 7)) 7). (32)

The partition function can be then formally written as

Z = o= i(80) / Do, 0] exp {—Somelo, 0: Dol /B . (33)



Beyond mean-field (I1)

Exanding Spmf[o, 0; Ap] at the second order and functional-integrating

over the amplitude field o(r, 7) one obtains!!

Z = o080 / DIO] exp {—Sy[6: Dol /A (34)

where 50 2] /Ohﬁ g /L2 s {é(vgf + g(879)2} (35)

is the action functional of the phase field (Goldstone field) with J the

phase stiffness and K the phase susceptibility.

At T =0 we find e m
J=F K—
4’ 40’ (36)

and the velocity ¢y of the Goldstone field reads

J_ VF o
R—\/i—cs. (37)

11A.M.J. Schakel, Ann. Phys. (N.Y.) 326, 193 (2011).
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Beyond mean-field (1)
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Figure: Upper panel: 2D scaled sound velocity ¢;/vr vs scaled binding energy
eg/er. Lower panel: 3D scaled sound velocity ¢s/vF vs scaled inverse
interaction strength 1/(kra).



Beyond mean-field (V)

The renormalization-group theory'? dictates that for our 2D system the
superfluid density ng is zero above the Berezinskii-Kosterlitz-Thouless
critical temperature Tgixr. Moveover below Tgkt the superfluid
density can be written as

4m
nS(T) = ﬁj( T) for T < TekT , (38)
and the critical temperature TgxT can be estimated by solving
self-consistently

.
kg Tkt = EJ(TBKT) , (39)

where J(T) is the finite-temperature stiffness of our action functional Sy
of the phase.

12H T.C. Stoof, K.B. Gubbels, D.B.M. Dickerscheid, Ultracold Quantum Fields
(Springer, Dordrecht, 2009).



Beyond mean-field (V)
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Figure: Dashed line: temperature T" above which Ay is zero; solid line:
Berezinskii-Kosterlitz-Thouless critical temperature Tgkr.



Beyond mean-field (V1)
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Figure: Superfluid fraction ns/n as a function of the scaled temperature
T / Tkt for different values of the scaled binding energy eg/er, where
er = (h*/m)mn is the Fermi energy. Above TgxT one has ns = 0.



Beyond mean-field (VII)

In our system the two-body density matrix

pa(r1, v2,03,14) = (1 (r1,0) P (r2,0) ¢ (r3,0) ¢b1(ra, 0))

shows algebric-long-range-order for 0 < T < Tgkr.

In particular, introducing the center-of-mass positions of the two Cooper
pairs, given by R = (r1 +r2)/2 and R’ = (r3 + r4)/2, and their relative
distances r = r; —r; and ' = r4 — r3, for |R — R’| — oo we find!

/ Ro ke
pa(r1,r2,r3,18) =~ F*(r) F(r') <|R— R’|>
where 1 A
Yy — & = h(BE. /2 ik-r’
) L2zk:2Ek ranh(BEx/2) e

is the mean-field wavefunction of the Cooper pair.

1LS, P.A. Marchetti, F. Toigo, arXiv:1309.7459.



Beyond mean-field (VIII)

The finite-temperature quasi-condensate density of atoms in the 2D
superfluid is then given by
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Open problems

There are several open problems regarding our 2D Fermi superfluid in the
BCS-BEC crossover. Among them we mention:

@ first and second sound at finite temperature

@ beyond mean-field equation of state: comparison with MC results
Bertaina and Giorgini, PRL 106, 110403 (2011)

@ unbalanced system
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