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Confined attractive BEC in an axial optical lattice

The energy-per-atom (E) of the self-attractive BEC described by the mean-
field stationary wave function, ¥(r), in the presence of the strong transverse
harmonic confinement with frequency w, acting in the plane of (x,y), is
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Here, the OL potential acting along axis z is
V(z) = —Vycos (2krz) , (2)
with
27 0
kr = —sin{—| , 3
L="X (2) (3)
where X\ is the wavelength of two laser beams with angle 8 between them that
create the AOL.



We assume normalization

[ 1@ = 1, (4)
then
g =22l (5)
a|

IS the adimensional strength of the self-attraction, with negative scattering
length of atomic collisions as, and the number of atoms in the condensate,
N.

Lengths are measured in units of the transverse harmonic length,

ap =, (6)
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with m is the atomic mass, and the depth of the potential, Vp, is taken in
units of Aw .

Mean-field regime: In our investigation the maximum lattice height is
Vo/Er = 4, with ER = k%/2 the recoil energy, while the maximum value
of the gas parameter is nl/3|as| = 0.25, with n the 3D local density.



Gaussian variational approach

To predict solitons in an approximate analytical form, we use the 3D Gaussian
ansatz,
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where o and n are, respectively, the transverse width and axial length of the
localized pattern. Inserting this ansatz into Eq. (1), we obtain
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We look for values of ¢ and n that minimize energy F and get
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which can be solved numerically. These solutions vield a ground state, i.e., a
minimum of energy, only if the curvature of the energy dependence, E(n,o),
IS positive.



Nonpolynomial Schrodinger equation (NPSE)

A more accurate analysis of the present setting may be performed using the
variational ansatz
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Inserting this expression into the 3D energy functional one finds
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Minimizing this energy, one arrives at the following equations for real functions

f(z) and o(2)
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Eqg. (13) is the stationary NPSE* with axial periodic potential.
*L.S., Laser Phys. 12, 198 (2002); L.S., A. Parola, and L. Reatto, PRA 65, 043614 (2002).



FIG. 1: The axial density profile, |f(z)|?, of the soliton in periodic potential, with k;, = 1 and
four different values of V. The self-attraction strength is fixed at ¢ = 0.5. From: L.S., A.
Cetoli, B.A. Malomed, and F. Toigo, PRA 75, 033622 (2007).
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FIG. 2: Axial length of the ground-state bright soliton, <22>1/2, as a function of self-attraction
strength g, for Vo = 0.4 and k;, = 1. Displayed are results provided by the Gaussian variational
and by the NPSE.

From: L.S., A. Cetoli, B.A. Malomed, and F. Toigo, PRA 75, 033622 (2007).



Vo Je \/<z2> o(0)
0 1.33 0.91 0.75
0.1 1.26 0.77 0.68
0.5 1.07 0.64 0.61
1 0.96 0.50 0.60
2 0.85 0.41 0.57

TABLE 1: The critical value of the self-attraction strength, g., and the corresponding values
of the axial length, \/@ and minimal transverse width, ¢(0), of the soliton in the periodic
potential, V(z) = —Vpcos (2kpz), with k; = 1, for different values of V,, as found from
numerical solution of the NPSE.

From: L.S., A. Cetoli, B.A. Malomed, and F. Toigo, PRA 75, 033622 (2007).
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FIG. 3: The axial density profile, p(z), of the soliton in potential, with k; = 1 and Vp = 0.2.
Comparison between results provided by the different equations: NPSE, 3D GPE, and 1D
GPE. In the case of the 3D equation, the axial density is defined as p(z) = [ [ |¢(r)|*dzdy,
while in the other cases it is simply |f(2)|?.

From: L.S., A. Cetoli, B.A. Malomed, and F. Toigo, PRA 75, 033622 (2007).



Dynamics of kicked bright solitons

To initiate the dynamics, we multiply the stationary solution fy(z) of NPSE
with AOL by exp(ipz), i.e., use initial conditions

f(z) = fo(z) exp(ipz) (15)

where p is the momentum of the imposed kick.

We solved the full time-dependent NPSE,
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with the initial condition of Eq. (15), by using a Crank-Nicholson predictor-
corrector algorithm in real time.

f(z,t), (16)

Note that configuration (15) can be created experimentally by means of the
so-called phase-imprinting techniquet.

fJ. Denschlag et al., Science 287, 97 (2000).



To characterize the motion of the kicked soliton we calculate the average
axial position of the soliton,

20 = [17GOP dz, (17)
and its average squared width,
(1)) = [ dz (2= 202 1£(,DP d. (18)

T hese expressions are not divided by the norm of wave function, as it is fixed
to be 1.

We introduce also the following effective Shannon entropy,
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is the share of the norm located, at time ¢, within the n!? lattice cell, and
Nce is the total number of cells (N,.;; = 32).

Maximum entropy, S = 1: the matter is distributed uniformly;

Mminimum entropy, S = 0: the entire norm is concentrated in a single cell.
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FIG. 4: Center of mass zg and average axial width (z2)1/2 of the soliton as functions of time.
Initial momentum is p = 0.25. Parameters of the optical lattice: k& =1 and Vo5 = 0.5.
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FIG. 5: Effective entropy S(t) as a function of time ¢t. Initial momentum is p = 0.25.

Parameters of the optical lattice: k; =1 and Vp = 0.5.



Our numerical simulations (136 x 2 = 272 runs!) reveal the existence of three
different dynamical regimes:

(i) stable breathers, i.e., solitons steadily moving at an almost constant
velocity, with small-amplitude shape oscillations; for these steadily traveling
solitons, the effective entropy S(t) varies by < 10% in the course of the long
evolution;

(ii) dispersive dynamics, in which case the soliton strongly spreads out in
the course of the evolution; here solitons move at a variable speed, and their
effective entropy increases by more than 10% against the initial value.

(iii) localization, in which a narrow soliton remains trapped in one lattice
cell; here the solitions may be slightly dispersive at the initial stage of the
evolution, but their effective entropy is always much smaller than in the other
two cases.
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FIG. 6: Dynamical regimes in the plane of (p,g). Black region: steadily moving breather-

like solitons; gray region: spreading out of the irregularly moving soliton; white region:
localization (the center of mass does not move). Parameters of the optical lattice are k;, = 1
and Vo = 0.5.
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FIG. 7: Dynamical regimes in the plane of (p,g). Black region: steadily moving breather-
like solitons; gray region: spreading out of the irregularly moving soliton; white region:
localization (the center of mass does not move). Parameters of the optical lattice are k;, = 1
and Vo = 1.



Conclusions

NPSE is very reliable to describe confined attractive BEC in an axial
optical lattice

The ground-state bright soliton can occupy one or many-sites depending
on inter-atomic stregth and lattice parameters

Also the collapse depends on inter-atomic stregth and lattice parameters

The behavior of a kicked bight soliton shows three different regimes:
— breather-like;

— irregular dynamics;

— localization.

THANKS!!



