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BCS-BEC crossover (I)

In 2004 the BCS-BEC crossover has been observed with ultracold gases
made of fermionic 40K and 6Li alkali-metal atoms.1

This crossover is obtained by changing (with a Feshbach resonance) the
s-wave scattering length as of the inter-atomic potential:
– as → 0− (BCS regime of weakly-interacting Cooper pairs)
– as → ±∞ (unitarity limit of strongly-interacting Cooper pairs)
– as → 0+ (BEC regime of bosonic dimers)

1C.A. Regal et al., PRL 92, 040403 (2004); M.W. Zwierlein et al., PRL 92, 120403
(2004); M. Bartenstein, A. Altmeyer et al., PRL 92, 120401 (2004); J. Kinast et al.,
PRL 92, 150402 (2004).



BCS-BEC crossover (II)

The crossover from a BCS superfluid (as < 0) to a BEC of molecular
pairs (as > 0) has been investigated experimentally around a Feshbach
resonance, where the s-wave scattering length as diverges, and it has
been shown that the system is (meta)stable.
The detection of quantized vortices under rotation2 has clarified that
this dilute and ultracold gas of Fermi atoms is superfluid.
Usually the BCS-BEC crossover is analyzed in terms of

y =
1

kFas

(1)

the inverse scaled interaction strength, where kF = (3π2n)1/3 is the
Fermi wave number and n the total density.
The system is dilute because rekF ≪ 1, with re the effective range of the
inter-atomic potential.

2M.W. Zwierlein et al., Science 311, 492 (2006); M.W. Zwierlein et al., Nature
442, 54 (2006).



Artificial spin-orbit coupling

In 2011 and 2012 artificial spin-orbit coupling has been imposed on both
bosonic3 and fermionic4 atomic gases.
The single-particle Hamiltonian ĥsp with both Rashba and Dresselhaus
spin-orbit couplings reads

ĥsp =
p̂2

2m
+ vR (σ̂x p̂y − σ̂y p̂x) + vD (σ̂x p̂y + σ̂y p̂x) , (2)

with p̂2 = −~
2∇2, p̂x = −i~ ∂

∂x
, p̂y = −i~ ∂

∂y
, vR and vD the Rashba and

Dresselhaus couping constant, respectively, and

σ̂x =

(

0 1
1 0

)

, σ̂y =

(

0 −i

i 0

)

.

3Y.J. Lin, K. Jimenez-Garcia, and I.B. Spielman, Nature 471, 83 (2011).
4P. Wang et al., PRL 109, 095301 (2012); L.W. Cheuk et al., PRL 109, 095302

(2012).



Mean-field approach (I)

The partition function Z of the uniform two-spin-component Fermi
system at temperature T , in a volume V , and with chemical potential µ
can be written in terms of a functional integral as

Z =

∫

D[ψs , ψ̄s ] exp

{

−1

~
S

}

, (3)

where

S =

∫ ~β

0

dτ

∫

V

d3r L (4)

is the Eucidean action functional and L is the Euclidean Lagrangian
density, given by

L =
(

ψ̄↑ , ψ̄↓

)

[

~∂τ + ĥsp − µ
]

(

ψ↑

ψ↓

)

+ g ψ̄↑ ψ̄↓ ψ↓ ψ↑ (5)

with g is the strength of the s-wave coupling (g < 0 in the BCS regime).
Notice that β = 1/(kBT ) with kB the Boltzmann constant. In the rest of
the seminar we shall use units such that ~ = m = kB = 1.



Mean-field approach (II)

The Lagrangian density L is quartic in the fermionic fields ψs , but one
can reduce the problem to a quadratic Lagrangian density by introducing
an auxiliary complex scalar field ∆(r, τ) via Hubbard-Stratonovich
transformation5, which gives

Z =

∫

D[ψs , ψ̄s ]D[∆, ∆̄] exp {−Se} , (6)

where

Se =

∫ 1/T

0

dτ

∫

V

d3r Le (7)

and the (exact) effective Eucidean Lagrangian density Le reads

Le =
(

ψ̄↑ , ψ̄↓

)

[

∂τ + ĥsp − µ
]

(

ψ↑

ψ↓

)

+ ∆̄ψ↓ ψ↑ + ∆ψ̄↑ ψ̄↓ −
|∆|2
g

.

(8)

5H.T.C. Stoof, K.B. Gubbels, D.B.M. Dickerscheid, Ultracold Quantum Fields
(Springer, Dordrecht, 2009).



Mean-field approach (III)

It is a standard procedure to integrate out the quadratic fermionic fields
and to get a new formally-exact effective action Seff which depends only
on the auxiliary field ∆(r, τ). In this way we obtain

Z =

∫

D[∆, ∆̄] exp {−Seff } , (9)

where

Seff = −Tr [ln
(

G−1
)

] −
∫ 1/T

0

dτ

∫

V

d3r
|∆|2
g

(10)

with γ(p̂) = vR(p̂y + i p̂x) + vD(p̂y − i p̂x) and

G−1 =











∂τ + p̂2

2m
− µ ∆ γ(p̂) 0

∆̄ ∂τ − p̂2

2m
+ µ 0 −γ(−p̂)

γ̄(p̂) 0 ∂τ + p̂2

2m
− µ ∆

0 −γ̄(−p̂) ∆̄ ∂τ − p̂2

2m
+ µ











(11)



Mean-field approach (IV)

For a uniform Fermi superfluid within the simplest mean-field
approximation one has a constant and real gap parameter, i.e.
∆(r, τ) = ∆, and the partition function becomes6

Zmf = exp {−Smf } = exp

{

−Ωmf

T

}

, (12)

where

Smf =
Ωmf

T
= −

∑

k





4
∑

j=1

ln
(

1 + e−Ek,j/T
)

− ξk
T



 − V

T

∆2

g
(13)

with ξk = ~
2k2/(2m) − µ, γk = ~vR(ky + ikx) + ~vD(ky − ikx), and

Ek,1 =
√

(ξk − |γk|)2 + ∆2 , Ek,3 = −Ek,1 , (14)

Ek,2 =
√

(ξk + |γk|)2 + ∆2 , Ek,4 = −Ek,2 . (15)

6L. Dell’Anna, G. Mazzarella, L.S., PRA 84, 033633 (2011).



Mean-field approach (V)

The constant and real gap parameter ∆ is obtained from

∂Smf

∂∆
= 0 , (16)

which gives the gap equation

− 1

g
=

1

V

∑

k

∑

j=1,2

tanh (Ek,j/2T )

4Ek,j
. (17)

The integral on the right side of this equation is formally divergent.
However, expressing the bare interaction strength g in terms of the
physical scattering length as with the formula7

− 1

g
= − 1

4πas

+
1

V

∑

k

1

k2
(18)

one obtains the regularized gap equation8

− 1

4πas

=
1

V

∑

k





∑

j=1,2

tanh (Ek,j/2T )

4Ek,j
− 1

k2



 . (19)

7M. Marini, F. Pistolesi, G.C. Strinati, EPJ B 1, 151 (1998).
8L. Dell’Anna, G. Mazzarella, L.S., PRA 84, 033633 (2011).



Mean-field approach (VI)

From the thermodynamic formula

N = −
(

∂Ωmf

∂µ

)

V ,T

(20)

one obtains also the equation for the number of particles9

N =
∑

k

(

1 − ξk − |γk|
2Ek,1

tanh (Ek,1/2T )− ξk + |γk|
2Ek,2

tanh (Ek,2/2T )

)

.

(21)

9L. Dell’Anna, G. Mazzarella, L.S., PRA 84, 033633 (2011).



Singlet and triplet condensation (I)

In a Fermi system the largest eigenvalue NC of the two-body density
matrix gives the number of correlated fermion pairs which have their
center of mass with zero linear momentum.10 This condensed
number of pairs is given by

NC = N0 + N1 , (22)

where

N0 =

∫

d3r d3r′
[

|〈ψ↓(r) ψ↑(r
′) 〉|2 + |〈ψ↑(r) ψ↓(r

′) 〉|2
]

(23)

is the condensed number of pairs in the spin 0 state (ms = 0), while

N1 =

∫

d3r d3r′
[

|〈ψ↑(r) ψ↑(r
′) 〉|2 + |〈ψ↓(r) ψ↓(r

′) 〉|2
]

. (24)

is the condensed number of pairs in the spin 1 state (|ms | = 1).

10A.J. Leggett, Quantum liquids. Bose condensation and Cooper pairing in
condensed-matter systems (Oxford Univ. Press, Oxford, 2006).



Singlet and triplet condensation (II)

In our superfluid Fermi system with spin-orbit coupling we obtain11

N0 =
∆2

4

∑

k

(

1

2Ek,1
tanh (Ek,1/2T ) +

1

2Ek,2
tanh (Ek,2/2T )

)2

. (25)

and

N1 =
∆2

4

∑

k

(

1

2Ek,1
tanh (Ek,1/2T )− 1

2Ek,2
tanh (Ek,2/2T )

)2

. (26)

Notice that in the absence of spin-orbit coupling (vR = vD = 0) one
has Ek,1 = Ek,2 from which one gets N1 = 0, and consequently the
condensate number of Cooper pairs in the triplet state is zero.

11L. Dell’Anna, G. Mazzarella, L.S., PRA 84, 033633 (2011).



Results with Rashba coupling (I)

We are interested in the low temperature regime where the condensate
fraction can be quite large. Quantitatively we restrict our study to the
zero temperature limit (T=0). In the equations above we have
therefore simply tanh(Ek,j/2T ) → 1.
In this way the regularized gap equation is given by

− 1

4πas

=
1

V

∑

k





∑

j=1,2

1

4Ek,j
− 1

k2



 , (27)

while the number equation reads

N =
∑

k

(

1 − ξk − |γk|
2Ek,1

− ξk + |γk|
2Ek,2

)

. (28)



Results with Rashba coupling (II)

Similarly, we obtain for the spin 0 condensate number

N0 =
∆2

4

∑

k

(

1

2Ek,1
+

1

2Ek,2

)2

. (29)

and for the spin 1 condensate number

N1 =
∆2

4

∑

k

(

1

2Ek,1
− 1

2Ek,2

)2

. (30)

From the previous equations one can calculate the chemical potential µ,
the energy gap ∆, and also the condensate fractions N0/(N/2) and
N1/(N/2), as a function of the scaled interaction strength y = 1/(kFaS).

Note: We now show the results obtained for vD = 0, i.e. when only
Rashba spin-orbit coupling is active.



Results with Rashba coupling (III)

Scaled chemical potential µ/ǫF as a function of the adimensional
interaction strength y = 1/(kFas) for different values of the scaled
Rashba velocity: vR/vF = 0 (solid line), vR/vF = 0.7 (long-dashed line),
vR/vF = 1 (short-dashed line), vR/vF = 1.4 (dotted line), vR/vF = 2
(dashed-dotted line). Here ǫF = v2

F /2 is the Fermi energy and
vF = (3π2n)1/3 is the Fermi velocity.



Results with Rashba coupling (IV)

Scaled energy gap ∆/ǫF as a function of the adimensional interaction
strength y = 1/(kFas) for different values of the scaled Rashba velocity:
vR/vF = 0 (solid line), vR/vF = 0.7 (long-dashed line), vR/vF = 1
(short-dashed line), vR/vF = 1.4 (dotted line), vR/vF = 2
(dashed-dotted line). Here ǫF = v2

F /2 is the Fermi energy and
vF = (3π2n)1/3 is the Fermi velocity.



Results with Rashba coupling (V)

Spin 0 condensate fraction n0/(n/2) (upper curves) and spin 1
condensate fraction n1/(n/2) (lower curves) as a function of the
adimensional interaction strength y = 1/(kFas) for different values of the
scaled Rashba velocity: vR/vF = 0 (solid line), vR/vF = 0.7 (long-dashed
line), vR/vF = 1 (short-dashed line), vR/vF = 1.4 (dotted line),
vR/vF = 2 (dashed-dotted line). Here vF = (3π2n)1/3 is the Fermi
velocity.



Including Dresselhaus coupling (I)

We now consider also the Dresselhaus coupling, i.e. vD 6= 0.
For simplicity we set12

vR = v cos (θ) , (31)

vD = v sin (θ) , (32)

where θ is the mixing angle.

12L. Dell’Anna, G. Mazzarella, L.S., PRA 86, 053632 (2012).



Including Dresselhaus coupling (II)
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Including Dresselhaus coupling (III)
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Conclusions

Unlike the chemical potential µ and the pairing gap ∆ which exhibit
no particular behavior at the crossover, the condensate fraction is
very interesting.

A finite condensate fraction of spin 1 pairs appears due to the
spin-orbit coupling.

The spin 1 condensate fraction is a not monotonic function of the
interaction strength y .
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