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Bosonic Josephson tunneling (I)

A system of N interacting bosons confined by a symmetric double-well
potential can be described by the two-site Bose-Hubbard model

Ĥ = −J
(
â+

1 â2 + â+
2 â1

)
+

U

2
[N̂1(N̂1 − 1) + N̂2(N̂2 − 1)] (1)

with J > 0 the tunneling (hopping) energy, U the boson-boson
interaction, and N̂j = â+

j âj . Here â1 and â+
j are the bosonic ladder

operators.
The mean-field approximation is obtained1 by using Glauber coherent
states

|ψ(t)〉 = |α1(t)〉1 |α2(t)〉2 (2)

where |αj(t)〉 is the eigenstate of the annihilation operator âj , with
complex eigenvalue

αj(t) =
√

Nj(t) e iφj (t) , (3)

where Nj(t) = 〈ψ(t)|N̂j |ψ(t)〉 is the average number of bosons in the site
j = 1, 2 and φj(t) is the corresponding phase.

1R. Franzosi and V. Penna, Phys. Rev. E 67, 046227 (2003).



Bosonic Josephson tunneling (II)

Quite remarkably, the mean-field dinamics is obtained by extremizing the
following action functional

S =

∫
〈ψ(t)|

(
i~
∂

∂t
− Ĥ

)
|ψ(t)〉. (4)

One can also introduce2 the relative phase

φ(t) = φ2(t)− φ1(t) (5)

and the normalized population imbalance

z(t) =
N1(t)− N2(t)

N
∈ [−1, 1] (6)

Here N = N1(t) + N2(t) is a constant of motion.
In this framework φ(t) and z(t) are the time-dependent variational
parameters of the cherent state |ψ(t) > which extremize the action S .

2A. Smerzi et al., Phys. Rev. Lett. 79, 4950 (1997).



Bosonic Josephson tunneling (III)

Specifically, we find3

S [z , φ] =

∫
dt

[
N~z

2
φ̇− UN2

4
z2 + JN

√
1− z2 cosφ

]
, (7)

with φ(t) and z(t) Lagrangian variables. Actually, for this specific
problem z(t) and φ(t) are canonically conjugated.
The corresponding Euler-Lagrange equations are

~φ̇ =
2Jz√
1− z2

cosφ+ UNz + ε, (8a)

~ż = −2J
√

1− z2 sinφ . (8b)

Linearizing around z = 0 and φ = 0 one gets the Josephson frequency

ωJ =
√

2J(UN + 2J)/~ . (9)

This prediction was experimentally verified in 2005 with 87Rb atoms.4
3S. Wimberger, G. Manganelli, A. Brollo, L.S., Phys. Rev. A 103, 023326 (2021).
4M. Albiez et al., Phys. Rev. Lett. 95, 010402(2025).



Only-phase effective action

Given the action S [z , φ], the effective action for the phase S [φ] is defined
as5

e
i
~S[φ] =

∫
D[z ] e

i
~S[z,φ] . (10)

The path integral can be computed explicitly expanding S [z , φ, ] up to
second order around z = 0. The resulting only-phase mean-field action is
given by

S [φ] =

∫
dt

[
m(φ)

2
φ̇2 − V (φ)

]
, (11)

where

m(φ) =
N~2

2(UN + 2J cos(φ))
. (12)

V (φ) = −JN cos(φ) . (13)

Quite remarkably, with the only-phase action S [φ] one recovers exactly
the same mean-field Josephson frequency obtained with S [z , φ].

5K. Furutani, J. Tempere, L.S., Phys. Rev. B 105, 134510 (2022).



Only-phase quantum effective action (I)

The one-loop quantum effective action6

Γ[φ] = S [φ] +
i~
2

Tr ln

(
δ2S

δη2
[φ]

)
(14)

provides a systematic way to include beyond-mean-field (quantum)
fluctuations. At zero temperature we find7

Γ[φ] =

∫
dt

[
meff(φ)

2
φ̇2 − Veff(φ)

]
, (15)

where

meff(φ) = m(φ) +
~
32

(
∂φΩ(φ)2

)2

Ω(φ)5
(16)

Veff(φ) = V (φ) +
~Ω(φ)

2
(17)

with

Ω(φ)2 =
V ′′(φ)− m′(φ)

2m(φ)V
′(φ)

m(φ)
. (18)

6S. Coleman, R. Jackiw, H.D. Politzer, Phys. Rev. D 10, 2491 (1974).
7C. Vianello, S. Salvatore, L.S., Int. J. Theor. Phys. 64, 315 (2025).



Only-phase quantum effective action (II)

Effective mass (left panel) and effective potential as functions of φ for
U = J = 1.0 and N = 50 (green lines), 100 (orange lines), and 200 (blue
lines). The dashed lines represent the corresponding mean-field result.
Adapted from C. Vianello, S. Salvatore, L.S., Int. J. Theor. Phys. 64,
315 (2025).



Only-phase quantum effective action (III)

Quantum corrections do not change the position of the minimum of the
effective potential Veff(φ), which is still located at φ = 0, where also
m′

eff(0) = 0. In particular, small oscillations around φ = 0 are harmonic,
with the frequency

ΩJ =

√
V ′′

eff(0)

meff(0)
= ωJ

√
1− 1

2N

UN + 6J√
2J(UN + 2J)

, (19)

where

ωJ =

√
2J(UN + 2J)

~
(20)

is the mean-field Josephson frequency.

Exact numerical results8 confirm the robustness of Eq. (19).

The relative correction induced by quantum fuctuations can be of
3% for condensates with N = 100 atoms in realistic trapping
configurations.

8C. Vianello, S. Salvatore, L.S., Int. J. Theor. Phys. 64, 315 (2025).



Only-phase quantum effective action (IV)

Comparison between the exact dynamics (solid black line), the mean-field
dynamics (dashed-dotted blue line), and the quantum-corrected dynamics
(dashed red line) of the relative phase, for N = 80, U = J = 1.0,
φ(0) = 0.1, and φ̇(0) = 0. Adapted from C. Vianello, S. Salvatore, L.S.,
Int. J. Theor. Phys. 64, 315 (2025).



Conclusions

Quantum effective action: useful method for fields and dynamical
variables.

Provides a bridge between classical (or mean-field) dynamics and
quantum fluctuations.

Can include thermal effects perturbatively.

Useful for theorists and experimentalists in quantum technologies.

Work in progress: quantum effective action for optomechanics (with
F. Lorenzi and M. Pelizzo).

Work in progress: quantum effective action for resistively and
capacitively shunted superconducting Josephson junction (with A.
Bardin, K. Furutani, and J. Tempere).
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