

Quantum effective action for Josephson dynamics

Luca Salasnich

Dipartimento di Fisica e Astronomia “Galileo Galilei” and Padua QTech Center,
Università di Padova

QT and AI: Challenges and Perspectives,
Siena, February 26-27, 2026

Outline

- Bosonic Josephson tunneling
- Only-phase effective action
- Only-phase quantum effective action
- Conclusions

Bosonic Josephson tunneling (I)

A system of N interacting bosons confined by a symmetric double-well potential can be described by the two-site Bose-Hubbard model

$$\hat{H} = -J(\hat{a}_1^+ \hat{a}_2 + \hat{a}_2^+ \hat{a}_1) + \frac{U}{2}[\hat{N}_1(\hat{N}_1 - 1) + \hat{N}_2(\hat{N}_2 - 1)] \quad (1)$$

with $J > 0$ the tunneling (hopping) energy, U the boson-boson interaction, and $\hat{N}_j = \hat{a}_j^+ \hat{a}_j$. Here \hat{a}_1 and \hat{a}_j^+ are the bosonic ladder operators.

The mean-field approximation is obtained¹ by using Glauber coherent states

$$|\psi(t)\rangle = |\alpha_1(t)\rangle_1 |\alpha_2(t)\rangle_2 \quad (2)$$

where $|\alpha_j(t)\rangle$ is the eigenstate of the annihilation operator \hat{a}_j , with complex eigenvalue

$$\alpha_j(t) = \sqrt{N_j(t)} e^{i\phi_j(t)}, \quad (3)$$

where $N_j(t) = \langle\psi(t)|\hat{N}_j|\psi(t)\rangle$ is the average number of bosons in the site $j = 1, 2$ and $\phi_j(t)$ is the corresponding phase.

¹R. Franzosi and V. Penna, Phys. Rev. E **67**, 046227 (2003).

Bosonic Josephson tunneling (II)

Quite remarkably, the mean-field dynamics is obtained by extremizing the following action functional

$$S = \int \langle \psi(t) | \left(i\hbar \frac{\partial}{\partial t} - \hat{H} \right) | \psi(t) \rangle. \quad (4)$$

One can also introduce² the relative phase

$$\phi(t) = \phi_2(t) - \phi_1(t) \quad (5)$$

and the normalized population imbalance

$$z(t) = \frac{N_1(t) - N_2(t)}{N} \quad \in [-1, 1] \quad (6)$$

Here $N = N_1(t) + N_2(t)$ is a constant of motion.

In this framework $\phi(t)$ and $z(t)$ are the time-dependent variational parameters of the coherent state $|\psi(t)\rangle$ which extremize the action S .

²A. Smerzi *et al.*, Phys. Rev. Lett. **79**, 4950 (1997).

Bosonic Josephson tunneling (III)

Specifically, we find³

$$S[z, \phi] = \int dt \left[\frac{N\hbar z}{2} \dot{\phi} - \frac{UN^2}{4} z^2 + JN\sqrt{1-z^2} \cos \phi \right], \quad (7)$$

with $\phi(t)$ and $z(t)$ Lagrangian variables. Actually, for this specific problem $z(t)$ and $\phi(t)$ are canonically conjugated.

The corresponding Euler-Lagrange equations are

$$\hbar \dot{\phi} = \frac{2Jz}{\sqrt{1-z^2}} \cos \phi + UNz + \varepsilon, \quad (8a)$$

$$\hbar \dot{z} = -2J\sqrt{1-z^2} \sin \phi. \quad (8b)$$

Linearizing around $z = 0$ and $\phi = 0$ one gets the Josephson frequency

$$\omega_J = \sqrt{2J(UN + 2J)/\hbar}. \quad (9)$$

This prediction was experimentally verified in 2005 with ^{87}Rb atoms.⁴

³S. Wimberger, G. Manganelli, A. Brollo, L.S., Phys. Rev. A **103**, 023326 (2021).

⁴M. Albiez *et al.*, Phys. Rev. Lett. **95**, 010402(2005).

Only-phase effective action

Given the action $S[z, \phi]$, the effective action for the phase $S[\phi]$ is defined as⁵

$$e^{\frac{i}{\hbar} S[\phi]} = \int \mathcal{D}[z] e^{\frac{i}{\hbar} S[z, \phi]} . \quad (10)$$

The path integral can be computed explicitly expanding $S[z, \phi]$ up to second order around $z = 0$. The resulting only-phase mean-field action is given by

$$S[\phi] = \int dt \left[\frac{m(\phi)}{2} \dot{\phi}^2 - V(\phi) \right] , \quad (11)$$

where

$$m(\phi) = \frac{N\hbar^2}{2(UN + 2J\cos(\phi))} . \quad (12)$$

$$V(\phi) = -JN\cos(\phi) . \quad (13)$$

Quite remarkably, with the only-phase action $S[\phi]$ one recovers exactly the same mean-field Josephson frequency obtained with $S[z, \phi]$.

⁵K. Furutani, J. Tempere, L.S., Phys. Rev. B **105**, 134510 (2022).

Only-phase quantum effective action (I)

The one-loop quantum effective action⁶

$$\Gamma[\phi] = S[\phi] + \frac{i\hbar}{2} \text{Tr} \ln \left(\frac{\delta^2 S}{\delta \eta^2} [\phi] \right) \quad (14)$$

provides a systematic way to include beyond-mean-field (quantum) fluctuations. At zero temperature we find⁷

$$\Gamma[\phi] = \int dt \left[\frac{m_{\text{eff}}(\phi)}{2} \dot{\phi}^2 - V_{\text{eff}}(\phi) \right] , \quad (15)$$

where

$$m_{\text{eff}}(\phi) = m(\phi) + \frac{\hbar}{32} \frac{(\partial_\phi \Omega(\phi))^2}{\Omega(\phi)^5} \quad (16)$$

$$V_{\text{eff}}(\phi) = V(\phi) + \frac{\hbar \Omega(\phi)}{2} \quad (17)$$

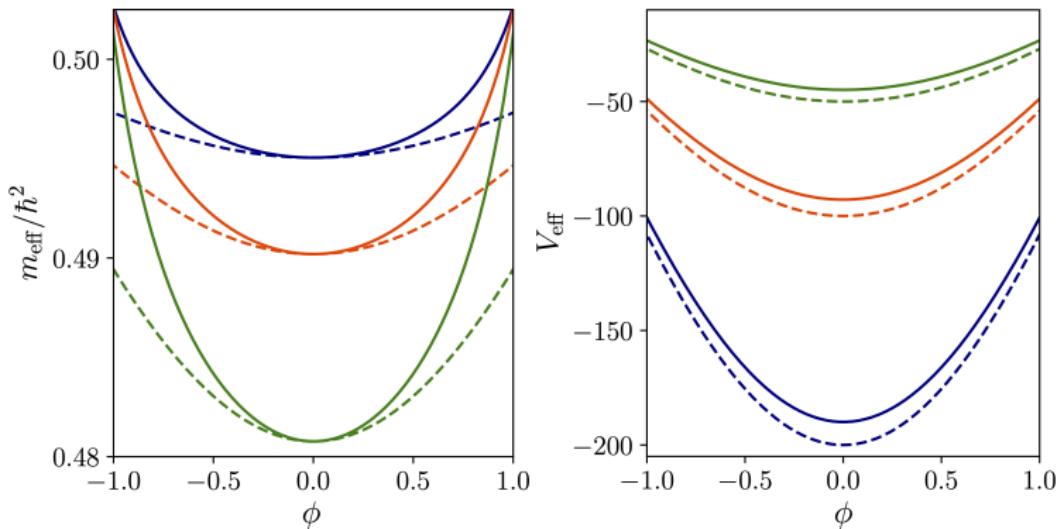
with

$$\Omega(\phi)^2 = \frac{V''(\phi) - \frac{m'(\phi)}{2m(\phi)} V'(\phi)}{m(\phi)} . \quad (18)$$

⁶S. Coleman, R. Jackiw, H.D. Politzer, Phys. Rev. D **10**, 2491 (1974).

⁷C. Vianello, S. Salvatore, L.S., Int. J. Theor. Phys. **64**, 315 (2025).

Only-phase quantum effective action (II)



Effective mass (left panel) and effective potential as functions of ϕ for $U = J = 1.0$ and $N = 50$ (green lines), 100 (orange lines), and 200 (blue lines). The dashed lines represent the corresponding mean-field result. Adapted from C. Vianello, S. Salvatore, L.S., Int. J. Theor. Phys. **64**, 315 (2025).

Only-phase quantum effective action (III)

Quantum corrections do not change the position of the minimum of the effective potential $V_{\text{eff}}(\phi)$, which is still located at $\phi = 0$, where also $m'_{\text{eff}}(0) = 0$. In particular, small oscillations around $\phi = 0$ are harmonic, with the frequency

$$\Omega_J = \sqrt{\frac{V''_{\text{eff}}(0)}{m_{\text{eff}}(0)}} = \omega_J \sqrt{1 - \frac{1}{2N} \frac{UN + 6J}{\sqrt{2J(UN + 2J)}}}, \quad (19)$$

where

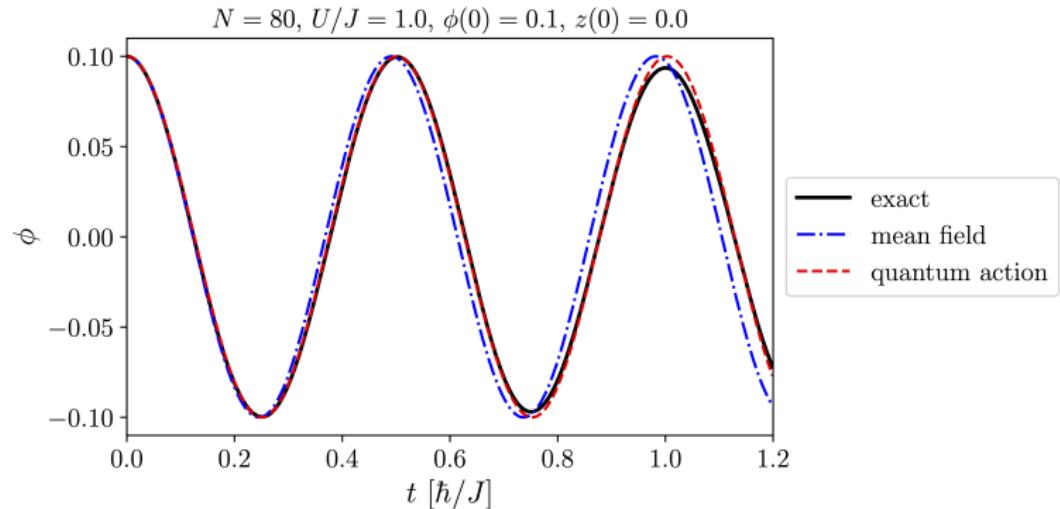
$$\omega_J = \frac{\sqrt{2J(UN + 2J)}}{\hbar} \quad (20)$$

is the mean-field Josephson frequency.

- Exact numerical results⁸ confirm the robustness of Eq. (19).
- The relative correction induced by quantum fluctuations can be of 3% for condensates with $N = 100$ atoms in realistic trapping configurations.

⁸C. Vianello, S. Salvatore, L.S., Int. J. Theor. Phys. **64**, 315 (2025).

Only-phase quantum effective action (IV)



Comparison between the exact dynamics (solid black line), the mean-field dynamics (dashed-dotted blue line), and the quantum-corrected dynamics (dashed red line) of the relative phase, for $N = 80$, $U = J = 1.0$, $\phi(0) = 0.1$, and $\dot{\phi}(0) = 0$. Adapted from C. Vianello, S. Salvatore, L.S., Int. J. Theor. Phys. **64**, 315 (2025).

Conclusions

- Quantum effective action: useful method for fields and dynamical variables.
- Provides a bridge between classical (or mean-field) dynamics and quantum fluctuations.
- Can include thermal effects perturbatively.
- Useful for theorists and experimentalists in quantum technologies.
- **Work in progress:** quantum effective action for optomechanics (with F. Lorenzi and M. Pelizzo).
- **Work in progress:** quantum effective action for resistively and capacitively shunted superconducting Josephson junction (with A. Bardin, K. Furutani, and J. Tempere).

Acknowledgments

Thank you for attention!

Thanks a lot also to my **collaborators**: Andrea Bardin (DFA UNIPD), Alberto Brollo (Tech. Univ. Munchen), Koichiro Furutani (Nagoya Univ.), Francesco Lorenzi (DEI UNIPD), Gabriele Manganelli (Cornell Univ.), Maria Pelizzo (DEI UNIPD), Sofia Salvatore (UNIPD), Jacques Tempere (Antwerp Univ.), Cesare Vianello (DFA UNIPD), and Sandro Wimberger (Univ. Parma).

Main sponsors: Iniziativa specifica “Quantum” of INFN; Progetto MUR di eccellenza dipartimentale “Quantum Frontiers” of DFA UNIPD; Spoke “Quantum” of Centro Nazionale di Ricerca ICSC; Progetto PRIN 2022 “Quantum Atomic Mixtures: Droplets, Topological Structures, and Vortices” of MUR.