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Modeling quasi-1D BEC in nonlinear lattice

We consider a dilute BEC of atoms with mass m confined in the
transverse plane by the isotropic harmonic-oscillator potential with
frequency ω⊥,
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. (1)

The corresponding adimensional 3D Gross-Pitaevskii equation (GPE) is
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where lengths are in units of a⊥ =
√

~/(mω⊥) and energies in units of
~ω⊥. The interaction strength in Eq. (2) is

g(z) = 2(N − 1)as(z)/a⊥ , (3)

where N is the number of atoms and as(z) the space-dependent
scattering length of the inter-atomic potential. In our model we consider
a nonlinear lattice (NL) given by

g(z) = g1 cos (2kz) , (4)

where g1 < 0 is the depth of the NL potential.



Gaussian variational approach (GVA)

We notice that the GPE can be derived from the Lagrangian density,
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and make use of a time-dependent Gaussian ansatz,
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where r2
⊥ ≡ x2 + y2, and σ⊥(t), σ‖(t) and β⊥(t), β‖(t) are

time-dependent variational parameters. This wave function is an exact
one for non-interacting bosons (g = 0) in the harmonic trap.



Gaussian variational approach (GVA)

Inserting the ansatz into Lagrangian density (5) and performing the
spatial integration, we arrive at the effective Lagrangian,
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with the overdot standing for time derivatives. The respective
Euler-Lagrange equations take the form of
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, (9)
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Gaussian variational approach (GVA)

Next, we look for stationary configurations, i.e. σ̇⊥ = σ̇‖ = σ̈⊥ = σ̈‖ = 0,
which yields

β⊥ = 0 , (13)

β‖ = 0 , (14)
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The last two equations can be solved numerically.
Further, low-energy excitations of the condensate around the stationary
state are represented by small oscillations of variables σ⊥(t) and σ‖(t)
around the stationary configurations.



Nonpolynomial Schrödinger equation (NPSE)

A more accurate description is obtained by using the following ansatz

ψ(r, t) =
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πσ(z, t)
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Substituting ansatz (17) into Lagrangian density (5), performing the
integration over x and y , and omitting spatial derivatives of the
transverse width, we derive the respective Lagrangian density
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Varying it with respect to f ∗(z, t) and σ(z, t) gives rise to the system of
Euler-Lagrange equations
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σ4 = 1 + g(z)|f |2 , (20)



Nonpolynomial Schrödinger equation (NPSE)

Inserting Eq. (20) into Eq. (19), we obtain the NPSE for the axial wave
function, but with the z-dependent interaction strength, g(z):
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In the weak-coupling regime, i.e., |g(z)| |f (z, t)|2 ≪ 1, one can expand
NPSE, Eq. (21), arriving at the cubic-quintic NLSE
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On the other hand, in the strong-coupling regime, g(z)|f (z, t)|2 ≫ 1
(which is relevant only for the repulsive sign of the nonlinearity, g > 0),
the NPSE amounts to the NLSE with the quadratic nonlinearity:

i
∂f

∂t
=

[

− 1

2

∂2

∂z2
+

3

2

√

g(z)|f |
]

f . (23)



Density profiles of bright solitons
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Figure: Typical examples of axial density ρ(z) ≡ |f (z)|2 of stable bright
solitons. The solid and dashed lines display the results produced by the NPSE
and GVA,respectively, for three different values of the interaction strength |g1|,
fixing k = 0.5 and g1 < 0. Here the green sinusoidal line represents the
periodic modulation function of the local nonlinearity. [Adapted from: LS and
B.A. Malomed, JPB 45, 055302 (2012)]



Collective oscillations of bright solitons
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Figure: Left panels: transverse and axial widths, σ⊥ and σ‖ (dashed and solid
lines, respectively) of stable bright solitons, vs |g1|, with g1 < 0. Right panels:
frequencies Ω1 and Ω2 (dashed and solid lines) of collective excitations vs. |g1|.
Curves: GVA. Symbols: NPSE. [Adapted from: LS and B.A. Malomed, JPB
45, 055302 (2012)]



Stability diagram of bright solitons
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Figure: The stability diagram for the solitons in the plane of wavenumber k

and strength |g1| of the NL, with g1 < 0 The solitons are stable between the
dashed lines, according to GVA, and between the solid lines, according to the
NPSE. The dot-dashed line is the lower bound predicted by the
one-dimensional cubic Gross-Pitaevskii equation. [Adapted from: LS and
B.A. Malomed, JPB 45, 055302 (2012)]



Immobility of bright solitons

The mobility of solitons trapped in the NL can be tested by applying a
kick to initially quiescent solitons.
For this purpose, NPSE was simulated with initial condition

f (z, t = 0) = fsol(z) e ivz , (24)

where v is the magnitude of kick, i.e., the initial velocity imparted to
soliton fsol(z), which was produced by means of the imaginary-time
simulations of the same NPSE.



Immobility of bright solitons
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Figure: The evolution of the kicked soliton with initial velocities v = 0.4 (left)
and v = 0.6 (right). Axial density ρ(z) is plotted at different values of real
time t, as obtained from simulations of NPSE. Here, g1 = −1.2 and k = 0.5
are fixed. [Adapted from: LS and B.A. Malomed, JPB 45, 055302 (2012)]



Immobility of bright solitons
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Figure: The critical velocity, vc , for the destruction of the kicked soliton versus
the strength of the nonlinear lattice, |g1|. Here, k = 0.5 if fixed, as before.
[Adapted from: LS and B.A. Malomed, JPB 45, 055302 (2012)]



Conclusions

Our main result is the stability domain for bright solitons in the
plane of the NL strength and wavenumber. We have obtained it
with both GVA and NPSE.

The usual 1D cubic Gross-Pitaevskii equation (1D GPE) with the
NL does not produce adequate results, as it does not give rise to the
collapse, which is the most important stability-limiting factor.

Another difference with respect to 1D GPE: bright solitons are
immobile in the framework of the NPSE with NL. The kick applied
to the soliton either leaves it pinned, or, eventually, destroys it.


