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Modeling quasi-1D BEC in nonlinear lattice

We consider a dilute BEC of atoms with mass m confined in the
transverse plane by the isotropic harmonic-oscillator potential with
frequency w,

1
V(x,y) = §mwﬁ_ (x> +y?) . (1)
The corresponding adimensional 3D Gross-Pitaevskii equation (GPE) is
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where lengths are in units of a; = y/A/(mw, ) and energies in units of
hw . The interaction strength in Eq. (2) is

g(z) =2(N —1)as(z)/aL , (3)

where N is the number of atoms and as(z) the space-dependent
scattering length of the inter-atomic potential. In our model we consider
a nonlinear lattice (NL) given by

g(z) = g1 cos(2kz) , (4)
where g1 < 0 is the depth of the NL potential.



Gaussian variational approach (GVA)

We notice that the GPE can be derived from the Lagrangian density,
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and make use of a time-dependent Gaussian ansatz,
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where r? = x? + y?, and o (t), o (t) and 3. (t), By (t) are
time-dependent variational parameters. This wave function is an exact
one for non-interacting bosons (g = 0) in the harmonic trap.



Gaussian variational approach (GVA)

Inserting the ansatz into Lagrangian density (5) and performing the
spatial integration, we arrive at the effective Lagrangian,
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with the overdot standing for time derivatives. The respective
Euler-Lagrange equations take the form of
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Gaussian variational approach (GVA)

Next, we look for stationary configurations, i.e. 6, = o =, =7 =0,
which yields
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The last two equations can be solved numerically.

Further, low-energy excitations of the condensate around the stationary
state are represented by small oscillations of variables o (t) and o (t)
around the stationary configurations.



Nonpolynomial Schrodinger equation (NPSE)

A more accurate description is obtained by using the following ansatz

Y1) = ——— exp [-%} f(z,1). (17)

Substituting ansatz (17) into Lagrangian density (5), performing the
integration over x and y, and omitting spatial derivatives of the
transverse width, we derive the respective Lagrangian density
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Varying it with respect to 7*(z, t) and o(z, t) gives rise to the system of
Euler-Lagrange equations

_ LOf  _Of*. 1|of
£= 5550 3o

OF 12 1/1 P2

ot = 1+gIf. (20)



Nonpolynomial Schrodinger equation (NPSE)

Inserting Eq. (20) into Eq. (19), we obtain the NPSE for the axial wave
function, but with the z-dependent interaction strength, g(z):
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In the weak-coupling regime, i.e., |g(z)||f(z,t)]?> < 1, one can expand
NPSE, Eq. (21), arriving at the cubic-quintic NLSE
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On the other hand, in the strong-coupling regime, g(z)|f(z,t)]* > 1
(which is relevant only for the repulsive sign of the nonlinearity, g > 0),
the NPSE amounts to the NLSE with the quadratic nonlinearity:
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nsity profiles of bright solitons
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Figure: Typical examples of axial density p(z) = |f(z)|* of stable bright
solitons. The solid and dashed lines display the results produced by the NPSE
and GVA respectively, for three different values of the interaction strength |g1|,
fixing k = 0.5 and g1 < 0. Here the green sinusoidal line represents the
periodic modulation function of the local nonlinearity. [Adapted from: LS and
B.A. Malomed, JPB 45, 055302 (2012)]



Collective oscillations of bright solitons
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Figure: Left panels: transverse and axial widths, o, and o) (dashed and solid
lines, respectively) of stable bright solitons, vs |gi1|, with g1 < 0. Right panels:
frequencies €1 and €, (dashed and solid lines) of collective excitations vs. |g1].
Curves: GVA. Symbols: NPSE. [Adapted from: LS and B.A. Malomed, JPB
45, 055302 (2012)]



Stability diagram of bright solitons
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Figure: The stability diagram for the solitons in the plane of wavenumber k
and strength |g1| of the NL, with g1 < 0 The solitons are stable between the
dashed lines, according to GVA, and between the solid lines, according to the
NPSE. The dot-dashed line is the lower bound predicted by the
one-dimensional cubic Gross-Pitaevskii equation. [Adapted from: LS and
B.A. Malomed, JPB 45, 055302 (2012)]



Immobility of bright solitons

The mobility of solitons trapped in the NL can be tested by applying a
kick to initially quiescent solitons.
For this purpose, NPSE was simulated with initial condition

f(z,t =0) = fai(2) e'? | (24)

where v is the magnitude of kick, i.e., the initial velocity imparted to
soliton fy01(z), which was produced by means of the imaginary-time
simulations of the same NPSE.



Immobility of bright solitons
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Figure: The evolution of the kicked soliton with initial velocities v = 0.4 (left)
and v = 0.6 (right). Axial density p(z) is plotted at different values of real
time t, as obtained from simulations of NPSE. Here, gt = —1.2 and k = 0.5
are fixed. [Adapted from: LS and B.A. Malomed, JPB 45, 055302 (2012)]



Immobility of bright solitons
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Figure: The critical velocity, v, for the destruction of the kicked soliton versus

the strength of the nonlinear lattice, |g1|. Here, k = 0.5 if fixed, as before.
[Adapted from: LS and B.A. Malomed, JPB 45, 055302 (2012)]



Conclusions

@ Our main result is the stability domain for bright solitons in the
plane of the NL strength and wavenumber. We have obtained it
with both GVA and NPSE.

@ The usual 1D cubic Gross-Pitaevskii equation (1D GPE) with the
NL does not produce adequate results, as it does not give rise to the
collapse, which is the most important stability-limiting factor.

@ Another difference with respect to 1D GPE: bright solitons are
immobile in the framework of the NPSE with NL. The kick applied
to the soliton either leaves it pinned, or, eventually, destroys it.



