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1. Hamiltonian of the three-component Fermi gas (I)

The shifted Hamiltonian density of a dilute and interacting
three-hyperfine-component Fermi gas in a volume V is given by
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)

, (1)

where ψ̂α(r) is the field operator that destroys a fermion of component α
in the position r. To mimic QCD the three components are thought as
three colors: red (R), green (G) and blue (B).
The attractive inter-atomic interaction is described by a contact
pseudo-potential of strength g (g < 0).



1. Hamiltonian of the three-component Fermi gas (II)

The number density operator is

n̂(r) =
∑

α=R,G ,B

ψ̂+
α (r)ψ̂α(r) (2)

and the average number of fermions reads

N =

∫

d3r 〈n̂(r)〉 . (3)

This total number N is fixed by the chemical potential µ which appears
in Eq. (1).
As stressed by Ozawa and Baym [Phys. Rev. A 82, 063615 (2010)] by
fixing only the total chemical potential µ (or equivalently only the total
number of atoms N) the Hamiltonian (1) is invariant under global SU(3)
rotations of the species.



2. Mean-field BCS equations and condensate fraction (I)

As shown by Ozawa and Baym [Phys. Rev. A 82, 063615 (2010)], the
attractive interaction (g < 0) leads to pairing of fermions which breaks
the SU(3) symmetry but only two colors are paired and one is left
unpaired.
We assume that the red and green particles are paired and the blue
ones are not paired. The interacting terms can be then treated within
the minimal mean-field BCS approximation, giving

g ψ̂+
R
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G
ψ̂G ψ̂R = g 〈ψ̂+

R
ψ̂+

G
〉ψ̂G ψ̂R + g ψ̂+

R
ψ̂+

G
〈ψ̂G ψ̂R〉 (4)
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g ψ̂+

R
ψ̂+

B
ψ̂B ψ̂R = g ψ̂+

G
ψ̂+

B
ψ̂B ψ̂G = 0 . (5)

Notice that the Hartree terms have been neglected, while the pairing
gap ∆ = g〈ψ̂G ψ̂R〉 between red and green fermions is the key quantity.



2. Mean-field BCS equations and condensate fraction (II)

The shifted Hamiltonian density (1) is diagonalized by using the
Bogoliubov-Valatin representation of the field operator ψ̂α(r) in terms of
the anticommuting quasi-particle Bogoliubov operators b̂kα with
quasi-particle amplitudes uk and vk and energy Ek . After minimization
of the resulting quadratic Hamiltonian one finds familiar expressions for
these quantities:
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with u2
k

= 1 − v2
k
.



2. Mean-field BCS equations and condensate fraction (III)

In addition we find the equation for the number of particles

N = NR + NG + NB , (8)

where

NR = NG =
1

2

∑

k

v2
k (9)

and

NB =
∑

k

Θ

(

µ− ~
2k2

2m

)

, (10)

with Θ(x) the Heaviside step function, and also the gap equation

− 1

g
=

1

V

∑

k

1

2Ek

. (11)

The chemical potential µ and the gap energy ∆ are obtained by solving
equations (8) and (11).



2. Mean-field BCS equations and condensate fraction (IV)

We observe that the condensate number of red-green pairs is given by

N0 =

∫

d3r1 d3r2 |〈ψ̂G (r1)ψ̂R(r2)〉|2, (12)

and it is straightforward to show that

N0 =
∑

k

u2
kv

2
k . (13)

For details see: L.S., N. Manini, and A. Parola, Phys. Rev. A 72, 023621
(2005); G. Ortiz and J. Dukelsky, Phys. Rev. A 72, 043611 (2005); N.
Fukushima, Y. Ohashi, E. Taylor, and A. Griffin, Phys. Rev. A 75,
033609 (2007).
Due to the choice of a contact potential, the gap equation (11)
diverges in the ultraviolet. This divergence is linear in three dimensions
and logarithmic in two dimensions. Let us face this problem in the next
two sections.



3. Results of the 3D model (I)

In three dimensions, a suitable regularization (see Marini, Pistolesi, and
Strinati, Eur. Phys. J. B 1, 151 (1998)] is obtained by introducing the
inter-atomic scattering length aF via the equation
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g
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4π~2aF

+
1

V

∑
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~2k2
, (14)

and then subtracting this equation from the gap equation (11). In this
way one obtains the three-dimensional regularized gap equation
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. (15)



3. Results of the 3D model (II)

In the three-dimensional continuum limit
∑

k → V /(2π2)
∫

k2dk from
the number equation (8) with (9) and (10) we find the total number
density as

n =
N

V
= nR + nG + nB , (16)

with

nR = nG =
1

2

(2m)3/2

2π2~3
∆3/2 I2

( µ

∆

)

, (17)

and

nB =
1

3

(2m)3/2

2π2~3
µ3/2 Θ(µ) . (18)

The renormalized gap equation (15) becomes instead
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=
2(2m)1/2

π~3
∆1/2 I1

( µ

∆

)

, (19)

where kF = (6πN/(3V ))1/3 = (2π2n)1/3 is the Fermi wave number.



3. Results of the 3D model (III)

Here I1(x) and I2(x) are the two monotonic functions

I1(x) =

∫ +∞

0

y2

(

1
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− 1
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)

dy , (20)
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)

dy , (21)

which can be expressed in terms of elliptic integrals, as shown by Marini,
Pistolesi and Strinati [Eur. Phys. J. B 1, 151 (1998)].
In a similar way we get the condensate density of the red-green pairs
as

n0 =
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V
=
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8π~3
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√

µ

∆
+

√

1 +
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∆2
. (22)



3. Results of the 3D model (IV)
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Figure: Upper panel: fraction of red fermions nR/n (solid line) and fraction of
blue fermions nB/n (dashed line) as a function of scaled interaction strength
y = 1/(kFaF ). Lower panel: condensed fraction of red-green particles n0/n
as a function of scaled interaction strength y = 1/(kF aF ). Note that
nR/n = nG/n.



4. Results of the 2D model (I)

Contrary to the three-dimensional case, in two dimensions quite generally
a bound-state energy ǫB exists for any value of the interaction strength
g between atoms. For the contact potential the bound-state equation is

− 1

g
=

1

V

∑

k

1
~2k2

2m
+ ǫB

, (23)

and then subtracting this equation from the gap equation (11) one
obtains the two-dimensional regularized gap equation (see Marini,
Pistolesi, and Strinati, Eur. Phys. J. B 1, 151 (1998)]
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4. Results of the 2D model (II)

In the two-dimensional continuum limit
∑

k → V /(2π)
∫

kdk , the
regularized gap equation gives

ǫB = ∆

(
√

1 +
µ2

∆2
− µ

∆

)

. (25)

Instead, from the number equation we get

n =
N

V
= nR + nG + nB , (26)

where V is a two-dimensional volume (i.e. an area), and
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nB =
( m

2π~2

)

µ Θ(µ) . (28)

Finally, the condensate density of red-green pairs is given by

n0 =
1
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)

∆
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2
+ arctan (

µ

∆
)
)

. (29)



4. Results of the 2D model (III)
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Figure: Upper panel: fraction of red fermions nR/n (solid line) and fraction of
blue fermions nB/n (dashed line) as a function of scaled bound-state energy
ǫB/ǫF . Lower panel: condensed fraction of red-green particles n0/n as a
function of scaled bound-state energy ǫB/ǫF . Note that nR/n = nG/n.



5. Inclusion of a harmonic trap (I)

It is interesting to study the effect of a harmonic potential

U(r) =
1

2
mω2r2 (30)

on the properties of the three-component ultracold gas in the BCS-BEC
crossover. For semplicity we investigate the two-dimensional case,
which gives rise to elegant formulas also in this non-uniform
configuration.
In fact, by using the local density approximation, namely the substitution

µ→ µ(r) = µ̄− U(r) , (31)

the gap equation (25) gives the space-dependent gap parameter as

∆(r) = ∆0 (1 − r2

r2
0

) Θ(1 − r2

r2
0

) , (32)

where ∆0 =
√

ǫ2
B

+ 2ǫB µ̄ and r0 = ∆0/
√
ǫBmω. Here µ̄ is the chemical

potential of the non-uniform system.



5. Inclusion of a harmonic trap (II)

In the same way the density profiles of red, green and blue fermions read

nR(r) = nG (r) =
1

2

( m

2π~2

)

∆(r)

(

µ(r)

∆(r)
+

√

1 +
µ(r)2

∆(r)2

)

, (33)

nB(r) =
( m

2π~2

)

µ(r) Θ(µ(r)) . (34)

The density profile of condensed red-green pairs is instead given by

n0(r) =
1

4

( m

2π~2

)

∆(r)

(

π

2
+ arctan (

µ(r)

∆(r)
)

)

. (35)



5. Inclusion of a harmonic trap (III)
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Figure: Left panels: density profile nR(r) of red fermions (solid lines) and
density profile nB(r) of blue fermions (dashed lines). Right panels: total density
profile n(r) = 2nR(r) + nB(r) (solid lines) and condensate density profile
2n0(r) (dot-dashed lines). Results obtained with µ̄ = 10 and three values of
the bound-state energy ǫB . Note that nR(r) = nG (r).



Conclusions

We have investigated the condensate fraction and the population
imbalance of a three-component ultracold fermions by increasing the
SU(3) invariant attractive interaction

We have considered the superfluid system both in the
three-dimensional case and in the two-dimensional one.

We have obtained explicit formulas and plots for number densities,
condensate density and population imbalance in the full BCS-BEC
crossover.

Our results can be of interest for next future experiments with
degenerate gases made of alkali-metal or alkaline-earth atoms in
three hyperfine states.

The problem of unequal couplings, and also that of a fixed number
of atoms for each component, with the inclusion of more than one
order parameter, is under investigation.


