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Introduction

Bose-Einstein condensates (BECs) made of ultracold alkali-metal atoms
under microgravity were achieved dropping the BEC down a
146-meter-long drop chamber1, but also rocketing the BEC and
conducting experiments during in-space flight.2

In 2020 a BEC in harmonic trap3 was observed with the NASA’s Cold
Atom Laboratory on board of the International Space Station (ISS).
Moreover, in 2022 the same team reported the observation of ultracold
atomic bubbles confined on a thin ellipsoidal shell.4

1T. van Zoest, et al., Science 328, 1540 (2010)
2D. Becker et al., Nature 562, 391 (2018).
3D.C. Aveline et al., Nature 582, 193 (2020).
4R.A. Carollo et al., Nature 606, 281 (2022).



Quantum particle on the surface of a sphere (I)

Let us consider the single-particle Hamiltonian

Ĥ0 = − ~2

2m
∇2 = − ~2

2m

[
1

r2

∂

∂r

(
r2 ∂

∂r

)
− L̂2

~2r2

]
(1)

where L̂2 is the square of the orbital angular momentum operator. Under
the assumption that the spherical radial coordinate r is fixed and given by

r = R , (2)

the Hamiltonian becomes

Ĥ0 =
L̂2

2mR2
. (3)



Quantum particle on the surface of a sphere (II)

Spherical coordinates: radial coordinate r ∈ [0,+∞[, polar angle
θ ∈ [0, π], azimuthal angle φ ∈ [0, 2π]. If the particle is constrained on
the surface of the sphere, r = R, with R the radius of the sphere.



Quantum particle on the surface of a sphere (III)

Its eigenvalue problem reads

Ĥ0|l ,ml〉 = εl |l ,ml〉 (4)

because the eigenvalues of L̂2 are ~2l(l + 1) with

εl =
~2

2mR2
l(l + 1) . (5)

Thus, the energy of a particle of mass m moving on the surface of a
sphere of radius R is quantized according to this formula where
l = 0, 1, 2, ... is the integer quantum number of the angular
momentum. This energy level has the degeneracy 2l + 1 due to the
magnetic quantum number ml = −l ,−l + 1, ..., l − 1, l of the third
component of the angular momentum.



Ideal Bose gas (I)

In quantum statistical mechanics the total number N of non-interacting
bosons moving on the surface of a sphere and at equilibrium with a
thermal bath of absolute temperature T is given by

N =
+∞∑
l=0

2l + 1

e(εl−µ)/(kBT ) − 1
, (6)

where kB is the Boltzmann constant and µ is the chemical potential. In
the Bose-condensed phase, we can set µ = 0 and

N = N0 +
+∞∑
l=1

2l + 1

eεl/(kBT ) − 1
, (7)

where N0 is the number of bosons in the lowest single-particle energy
state, i.e. the number of bosons in the Bose-Einstein condensate (BEC).



Ideal Bose gas (II)

Within the semiclassical approximation, where
∑+∞

l=1 →
∫ +∞

1
dl , the

previous equation becomes

n = n0 +
mkBT

2π~2

(
~2

mR2kBT
− ln

(
e~

2/(mR2kBT ) − 1
))

, (8)

where n = N/(4πR2) is the 2D number density and n0 = N0/(4πR2) is
the 2D condensate density.
At the critical temperature TBEC , where n0 = 0, one then finds5

kBTBEC =
2π~2

m n
~2

mR2kBTBEC
− ln

(
e~2/(mR2kBTBEC ) − 1

) . (9)

As expected, in the limit R → +∞ one gets TBEC → 0, in agreement
with the Mermin-Wagner theorem.6 However, for any finite value of R
the critical temperature TBEC is larger than zero.

5A. Tononi and LS, Phys. Rev. Lett. 123, 160403 (2019).
6N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).



Ideal Bose gas (III)

Top panel: TBEC vs nR2, with ζ = ~2n/m. Solid line: semiclassical
approximation (solid line); dashed line: numerical evaluation of the sum.
Bottom panel: condensate fraction n0/n vs temperature T/TBEC .



Ideal Fermi gas (I)

In quantum statistical mechanics the total number N of non-interacting
fermions (with two spin components) moving on the surface of a sphere
and at equilibrium with a thermal bath of absolute temperature T is
given by

N = 2
∞∑
l=0

2l + 1

e(εl−µ)/(kBT ) + 1
, (10)

where kB is the Boltzmann constant and µ is the chemical potential.
We now use the Euler-MacLaurin formula

∞∑
l=0

f (l) =

∫ +∞

0

dl f (l) +
1

2
f (0)− 1

12

df

dl
(0) + ... (11)

In this way we get the number density

n =
N

4πR2
=

mkBT

π~2
ln (1 + eµ/(kBT )) +

1

6πR2

eµ/(kBT )

(1 + eµ/(kBT ))
+ ... (12)

that is the familiar result of the 2D flat space plus finite-size corrections
which depend on the radius R. As expected, in the thermodynamic limit
R → +∞ only the flat term survives.



Ideal Fermi gas (II)

Notice that in the zero-temperature limit T → 0+ we have

n =
m

π~2
µ+

1

6πR2
+ ... , (13)

namely (with nR2 � 1/(6π))

µ =
π~2n

m
− ~2

6mR2
+ ... . (14)

This is the Fermi energy of a two-component ideal Fermi gas with 2D
number density n moving a the superface of a sphere of radius R.
One can then derive many other thermodynamical quantities. For
instance, the internal energy density at zero temperature reads

E

4πR2
=

∫ n

0

µ(ñ) dñ =
π~2n2

2m
− ~2n

6mR2
+ ... . (15)



Quantum particle near the surface of a sphere (I)

We now consider a quantum particle confined near the surface of a
sphere. In particular, we adopt the following single-particle Hamiltonian

Ĥ0 = − ~2

2m
∇2 +

m

2
ω2
⊥(r − R)2 (16)

which contains an harmonic confinement in the radial direction with
frequency ω⊥. This potential potential has a minimum for r = R and it
acts only perpendicularly to the surface of the sphere. As usual, the
corresponding characteristic harmonic length is

`⊥ =

√
~

mω⊥
. (17)

Assuming that the frequency ω⊥ is quite large, we write the wavefunction
of the quantum particle in spherical coordinates as

Ψ(r , θ, φ, t) = χ(r)ψ(θ, φ, t) , (18)

where
χ(r) = N e−(r−R)2/(2`2

⊥) . (19)



Quantum particle near the surface of a sphere (I)

Imposing that ∫ +∞

0

dr r2 |χ(r)|2 = 1 (20)

we find

N =
1

π1/4`
1/2
⊥ R

(21)

in the regime R � `⊥. Actually, in the same limit we also have

1

π1/2`⊥
e−(r−R)2/`2

⊥ → δ(r − R) . (22)

In other words,

|χ(r)|2 → 1

R2
δ(r − R) (23)

when `⊥ → 0+. This means that the square modulus of the radial
wavefunction reduces to a Dirac delta function centered in r = R: in this
limit the particle lives on the surface of a sphere.



Quantum particle near the surface of a sphere (II)

Starting from the imaginary-time (Euclidean) Lagrangian density

L0 = Ψ∗(r , θ, φ, τ)

(
~
∂

∂τ
− ~2

2m
∇2 +

m

2
ω2
⊥(r − R)2 − µ

)
Ψ(r , θ, φ, τ)

(24)
and performing the decomposition described in the previous slides, after
integrating over the radial coordinate r we get, in the limit `⊥ → 0+, the
effective Lagrangian density on the surface of the sphere

L0 = ψ∗(θ, φ, τ)

(
~
∂

∂τ
+

L̂2

2mR2
− µ‖

)
ψ(θ, φ, τ) (25)

with

µ‖ = µ− ~2

2m`2
⊥
. (26)



Interacting bosons (I)

We now investigate a system of interacting bosons on the surface of a
sphere of radius R and contact interaction of strength.
Adopting functional integration the grand canonical partition function Z
reads

Z =

∫
D[ψ∗, ψ] e−

S[ψ∗,ψ]
~ , (27)

where

S [ψ∗, ψ] =

∫ ~/(kBT )

0

dτ

∫ 2π

0

dϕ

∫ π

0

sin(θ) dθL(ψ∗, ψ) (28)

is the Euclidean action functional,

L = L0 +
g‖
2
|ψ(θ, ϕ, τ)|4 (29)

is the Euclidean Lagrangian density, with L0 given by Eq. (25) and

g‖ =
g3D√

2π`⊥R2
(30)

being g3D the 3D contact interaction strength.



Interacting bosons (II)

By considering the bosonic partition function, within a perturbative
scheme7 one obtains8 the following BEC critical temperature

kBTBEC =
2π~2n

m − g2Dn
2

~2

2mR2kBTBEC

(
1 +

√
1 + 2g2DmnR2

~2

)
− ln

(
e

~2

mR2kBTBEC

√
1+

2g2DmnR2

~2 − 1

)
(31)

with
g2D = g‖R

2 =
g3D√
2π`⊥

. (32)

This formula is a meaningful generalization of the one we have previously
seen in the case of ideal bosons on the surface of a sphere, namely

kBTBEC =
2π~2

m n
~2

mR2kBTBEC
− ln

(
e~2/(mR2kBTBEC ) − 1

) . (33)

7H. Kleinert, S. Schmidt, and A. Pelster, Phys. Rev. Lett. 93, 160402 (2004).
8A. Tononi and LS, Phys. Rev. Lett. 123, 160403 (2019).



Interacting bosons (III)

For the sake of completeness, we discuss the phase diagram9 of the gas
of bosons on the surface of a sphere by using the plane (gm/~2,kBT/ζ),
where gm/~2 is the adimensional interaction strength of bosons and
kBT/ζ is the adimensional temperature with ζ = ~2n/m. Here g = g2D .

Within the approximations adopted, depending on the values of gm/~2,
kBT/ζ, but also nR2, the system can show:
– coexistence of condensation and superfluidity (BEC+SF);
– superfluidity in the absence of condensation (SF);
– Bose-Einstein condensation in the absence of superfluidity (BEC).

In the thermodynamic limit, i.e. nR2 → +∞, the BEC region shrinks to
zero.

9A. Tononi and LS, Phys. Rev. Lett. 123, 160403 (2019)



Interacting bosons (IV)

Phase diagram of the bosonic system for nR2 = 102 (upper panel) and
nR2 = 104 (lower panel). Here ζ = ~2n/m. Adapted from A. Tononi
and LS, Phys. Rev. Lett. 123, 160403 (2019). Here g = g2D .



Interacting bosons (V)

Phase diagram of the bosonic system for nR2 = 105. Here ζ = ~2n/m.
Adapted from A. Tononi and LS, Phys. Rev. Lett. 123, 160403 (2019).
Here g = g2D .



Interacting fermions (I)

Currently we are studying the problem of two-spin-component interacting
fermions moving on the surface of a sphere of radius R. The Euclidean
action is given by

S [ψ̄σ, ψσ] =

∫ ~/(kBT )

0

dτ

∫ 2π

0

dϕ

∫ π

0

dθ sin(θ)L(ψ̄σ, ψσ) (34)

where

L =
∑
σ=↑,↓

ψ̄σ

(
~
∂

∂τ
+

L̂2

2mR2
− µ‖

)
ψσ + g‖ψ̄↑ψ̄↓ψ↓ψ↑ (35)

with ψσ(θ, φ, τ) the Grassman field, which depends on the angular
variables θ and φ, and also on the imaginary time τ .



Interacting fermions (II)

As in the case of bosons, also for fermions the grand canonical partition
function Z can be written in the framework of functional integration as
follows

Z =

∫
D[ψ̄σ, ψσ] e−

S[ψ̄σ,ψσ ]
~ (36)

where the functional integration involves the Berezin integral of
Grassmann fields.
The grand potential is then given by

Ω = −kBT ln(Z) , (37)

while the average number of fermions reads

N = −
(
∂Ω

∂µ

)
T ,R

. (38)



Interacting fermions (III)

Repulsive fermions can be investigated by using the Hartree-Fock
approximation:

ψ̄↑ψ̄↓ψ↓ψ↑ '
ñ

2
ψ̄↑ψ↑ +

ñ

2
ψ̄↓ψ↓ −

ñ2

4
, (39)

assuming a balanced configuration

ñ

2
= ñ↑ = ñ↓ (40)

with
ñσ = 〈ψ̄σψσ〉 . (41)

In this way the Hartre-Fock Lagrangian Euclidean density is quadratic
with respect to the fermionic fields

LHF =
∑
σ=↑,↓

ψ̄σ

(
~
∂

∂τ
+

L̂2

2mR2
− µ‖ + g‖

ñ

2

)
ψσ − g‖

ñ2

4
(42)

and the corresponding Gaussian functional integrals can be exactly
calculated. Notice that n = ñ/R2.



Conclusions

We have analyzed a quantum particle on (and near) the surface of a
sphere10.

We have discussed the critical temperature TBEC of Bose-Einstein
condensation for ideal bosons, and also for repulsive bosons with
contact interaction.

We have investigated the thermodynamics of the ideal Fermi gas
on the surface of a sphere, finding finite-size corrections which
depend on the radius R of the sphere.

For the sake of completeness we have illustrated11 the phase
diagram of the interacting Bose gas, characterized by
Bose-Einstein condensation with or without superfluidity.

We have also shown the Euclidean action functional of interacting
fermions confined on the surface of a sphere.

10A. Tononi and LS, Nature Rev. Phys. 5, 398 (2023).
11A. Tononi and LS, Phys. Reports 1072, 1 (2024).
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