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Gas of photons at thermal equilibrium (I)

Let us consider the quantum radiation field in thermal equilibrium with a
bath at the temperature T . The relevant quantity to calculate all
thermodynamical properties of the system is the grand-canonical
partition function Z, given by

Z = Tr [e−β(Ĥ−µN̂)] (1)

where β = 1/(kBT ) with kB = 1.38 · 10−23 J/K the Boltzmann constant,

Ĥ =
∑
k

∑
s

~ωk N̂ks , (2)

is the quantum Hamiltonian without the zero-point energy,

N̂ =
∑
k

∑
s

N̂ks (3)

is the total number operator, and µ is the chemical potential, fixed by
the conservation of the particle number. Here N̂ks is the number operator
of photons with wavevector k and polarization s = 1, 2.



Gas of photons at thermal equilibrium (II)

Quantum statistical mechanics dictates that the thermal average of any
operator Â is obtained as

〈Â〉T =
1

Z
Tr [Â e−β(Ĥ−µN̂)] . (4)

In our case the calculations are simplified because µ = 0. Let us suppose
that Â = Ĥ, it is then quite easy to show that

〈Ĥ〉T =
∑
k

∑
s

~ωk

eβ~ωk − 1
=
∑
k

∑
s

~ωk 〈N̂ks〉T , (5)

where

N̄k = 〈N̂ks〉T =
1

eβ~ωk − 1
=

1

e~ck/(kBT ) − 1
. (6)

Remember that N̂ks = â+
ks âks with â+

ks and âks the ladder operators,
which create and annihlate photons with wavevector k and polarization s.



Gas of photons at thermal equilibrium (III)

In the continuum limit, where∑
k

→ L3

∫
d3k

(2π)3
, (7)

with L3 the volume of a cubic box of size L, and taking into account that
ωk = ck , one can write the thermal-averaged energy density

Ē =
〈Ĥ〉T
L3

(8)

as

Ē = 2

∫
d3k

(2π)3

c~k
eβc~k − 1

=
c~
π2

∫ ∞
0

dk
k3

eβc~k − 1
, (9)

where the factor 2 is due to the two possible polarizations (s = 1, 2).



Gas of photons at thermal equilibrium (IV)

By using ω = ck instead of k as integration variable one gets

Ē =
~

π2c3

∫ ∞
0

dω
ω3

eβ~ω − 1
=

∫ ∞
0

dω ρ(ω) , (10)

where

ρ(ω) =
~

π2c3

ω3

eβ~ω − 1
(11)

is the energy density per frequency, i.e. the familiar formula of the
black-body radiation, obtained for the first time in 1900 by Max Planck.1

The previous integral can be explicitly calculated and it gives

Ē =
π2k4

B

15c3~3
T 4 , (12)

which is nothing but the Stefan-Boltzmann law.

1M. Planck, Ann. Physik, 306, 719 (1900).



Gas of photons at thermal equilibrium (V)

In an similar way one determines the average number density of photons:

n̄ =
〈N̂〉T
L3

=
1

π2

∫ ∞
0

dk k2 1

e
~ck
kBT − 1

=
1

π2c3

∫ ∞
0

dω
ω2

eβ~ω − 1
=

2ζ(3)k3
B

π2c3~3
T 3 . (13)

where ζ(x) is the Riemann zeta function and ζ(3) ' 1.202.
Notice that both energy density E and number density n of photons go to
zero as the temperature T goes to zero.
We stress that our results are obtained at thermal equilibrium and under
the condition of a vanishing chemical potential, meaning that the number
of photons is not conserved when the temperature is varied.



Field operators for photons (I)

We introduce2 the annihilation (absorption) vector field operator of
photons as

V̂ (r, t) =
∑
ks

âks
e i(k·r−ωk t)

√
L3

uks , (14)

which destroys a photon localized at the position r at time t. Here L3 is
the volume and uks is the unit polarization vector. The corresponding
creation vector field operator reads

V̂
+

(r, t) =
∑
ks

â+
ks

e−i(k·r−ωk t)

√
L3

uks . (15)

The definition of the number density operator of photons follows quite
naturally

n̂(r, t) = V̂
+

(r, t) · V̂ (r, t) . (16)

2Mandel and Wolf, Optical Coherence and Quantum Optics, Chapters 12 and 13
(Cambridge Univ. Press, 1995).



Field operators for photons (II)

We find immediately that

n̂(r, t) =
∑
k′s′

∑
ks

â+
k′s′ âks

e−i(k
′·r−ωk′ t)e i(k·r−ωk t)

L3
uk′s′ · uks . (17)

Moreover, taking into account that the ortho-normalization of the plane
waves we get ∫

n̂(r, t) d3r =
∑
ks

â+
ks âks =

∑
ks

N̂ks = N̂ . (18)

Thus, this operator is indeed the local number density operator of
photons.



Field operators for photons (III)

By using the Hamiltonian of Eq. (2), the thermal average of the number
density operator is given by

〈n̂(r, t)〉T =
1

L3

∑
ks

〈â+
ks âks〉T =

1

L3

∑
ks

〈N̂ks〉T =
〈N̂〉T
L3

(19)

due to the fact that

〈â+
k′s′ âks〉T = 〈â+

ks âks〉T δk,k′δs,s′ . (20)



First order correlations (I)

In several applications it is useful the field-field correlator given by

〈V̂
+

(r, t)·V̂ (r′, t ′)〉T =
∑
k′s′

∑
ks

〈â+
k′s′ âks〉T

e−i(k
′·r−ωk′ t)e i(k·r

′−ωk t
′)

L3
uk′s′ ·uks .

(21)
Using Eq. (20) we get

〈V̂
+

(r, t) · V̂ (r′, t ′)〉T =
1

L3

∑
ks

〈N̂ks〉T e i [k·(r
′−r)−ωk (t′−t)] . (22)

We can also normalize to one this field-field correlator introducing the
so-called one-body correlation function

g (1)(r − r′, t − t ′) =
L3

〈N̂〉T
〈V̂

+
(r, t) · V̂ (r′, t ′)〉T

=
1

〈N̂〉T

∑
ks

〈N̂ks〉T e i [k·(r
′−r)−ωk (t′−t)] . (23)



First order correlations (II)

Clearly, one finds
g (1)(0, 0) = 1 . (24)

In the continuum limit where
∑

k → L3
∫
d3k/(2π)3 and using spherical

coordinates for the wavevector k, the stationary one-body correlation
function (23) can be written as

g (1)(r, t) =
4πL3

〈N̂〉T

∫ +∞

0

dk k2

8π3
N̄k

∫ 1

−1

d [cos (θ)] e ik|r| cos θ e−ickt

=
1

n̄

1

π2

∫ +∞

0

dk k2 N̄k
sin (k |r|)

k |r|
e−ickt , (25)

where n̄ = 〈N̂〉/L3 and

N̄k =
1

e~ck/(kBT ) − 1
. (26)



First order correlations (III)

In a more compact form the function g (1)(r, t) reads

g (1)(r, t) =
1

2ζ(3)

∫ +∞

0

dy y2 1

ey − 1

sin (y |r|rch )(
y |r|rch

) e−iyt/tch , (27)

where

rch =
~c
kBT

, (28)

is a characteristic length of the spatial decay and

tch =
rch
c

=
~

kBT
(29)

is a characteristic time.



First order correlations (IV)

Considering only the time dependence, i.e. setting r = 0, we have

g (1)(0, t) =
1

2ζ(3)

∫ +∞

0

dy y2 1

ey − 1
e−iyt/tch =

ζ(3, 1 + i(t/tch))

ζ(3)
,

(30)
where ζ(x , y) is the generalized Riemann zeta function defined as the
analytic continuation of

ζ(x , y) =
∞∑
n=0

1

(n + y)x
(31)

and such that ζ(x , 1) = ζ(x).



Second order correlations (I)

The density-density correlator is defined as

〈n̂(r, t) n̂(r′, t ′)〉T =
∑
k′′′s′′′

∑
k′′s′′

∑
k′s′

∑
ks

〈â+
k′′′s′′′ âk′′s′′ â

+
k′s′ âks〉T

× e−i(k
′′′·r−ωk′′′ t)e i(k

′′·r−ωk′′ t)

L3

e−i(k
′·r′−ωk′ t

′)e i(k·r
′−ωk t

′)

L3

× uk′′′s′′′ · uk′′s′′ uk′s′ · uks . (32)

However, taking into account the Wick’s theorem3 Eq. (32) becomes

〈n̂(r, t) n̂(r′, t ′)〉T =
1

L6

∑
k′s′

∑
ks

〈N̂k′s′〉T 〈N̂ks〉T

×
[
1 + e i [(k

′−k)·(r−r′)−(ωk′−ωk )(t−t′)] εk′s′ · εks
]
. (33)

3MSc thesis of A. Hoffmann, Spatiotemporal formation of the Kondo cloud
(Ludwig Maximilians Universität München, 2012).



Second order correlations (II)

We now introduce the normalized two-body correlation function

g (2)(r − r′, t − t ′) =
L6

〈N̂〉2
〈n̂(r, t) n̂(r′, t ′)〉T (34)

Quite remarkably, it is possibile to prove4 that

g (2)(r, t) = 1 + |g (1)(r, t)|2 . (35)

Thus, the two-body correlation function can be obtained from the
knowledge of the one-body correlation function. Clearly, one finds

g (2)(0, 0) = 2 . (36)

4I. Bouchoule, N. J. Van Druten, and C.I. Westbrook, Atom chips and
one-dimensional Bose gases, in J. Reichel and V. Vuletic (Eds.), Atom Chips, Chapter
11 (Wiley, 2011).



Second order correlations (III)
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Figure: Time dependence of the one-body |g (1)(0, t)| and two-body g (2)(0, t)
correlation functions. Here t is time and tch = ~/(kBT ) is the characteristic
period of time decay.



Detecting time correlations (I)

Considering the temperature

T = 2.73 Kelvin (37)

of the cosmic microwave background (CMB) we have

rch =
~c
kBT

= 8.4× 10−4 meters , (38)

and

tch =
rch
c

=
~

kBT
= 2.8× 10−12 seconds . (39)



Detecting time correlations (II)

Detectors of photons work in a finite range of linear frequencies

ν ∈ [νmin, νmax ] (40)

and within a specific solid angle Ω such that

Ω ≤ 4π . (41)

Thus, the detectable total number density of photons is

n̄d = 2Ω

(
kBT

hc

)3 ∫ hνmax/(kBT )

hνmin/(kBT )

dy
y2

ey − 1
(42)

with ν = ω/(2π) and h = 2π~. Similary, the detectable first order
correlation function is

g
(1)
d (0, t) =

2Ω

n̄d

(
kBT

hc

)3 ∫ hνmax/(kBT )

hνmin/(kBT )

dy
y2

ey − 1
e−iyt/tch . (43)



Detecting time correlations (III)

Figure: Correlations |g (1)
d (0, t)| and g

(2)
d (0, t) = 1 + |g (1)

d (0, t)|2 vs t/tch with
tch = ~/(kBT ). Temperature T = 2.73 Kelvin and frequency range [5, 10] GHz.
Adapted from M. Toffoli, BSc thesis (2023).



Conclusions

We have discussed some properties of photons at thermal
equilibrium.

First order and second order correlations are derived. The obtained
formulas are not new.

We have also considered a modification of these formulas taking into
account detection limitations.

Quite remarkably, the temporal correlations are strongly modified
working with a finite range of photon frequencies.
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