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Spin-polarized fermions in double-well

We consider a confined dilute and ultracold spin-polarized gas of NF fermionic

atoms of mass m in a double-well potential.∗ In practice: an ideal Fermi gas

because the s-wave interaction of two particle with the same spin is forbidden

by Fermi statistics.

The trapping potential of the system is given by

V (r) = U(x) +
1

2
mω2

⊥(y2 + z2) , (1)

We suppose that the system is one-dimensional (1D), due to a strong radial

transverse harmonic confinement, with a symmetric double-well trapping po-

tential in the longitudinal axial direction, that we will denote by U(x). Thus,

the transverse energy ~ω⊥ is much larger than the characteristic energy of

fermions in the axial direction.

∗A similar system has beeen studied by S. Zöllner et al., PRL 100, 040401 (2008); K.
Ziegler, PRA 81, 034701 (2010).



We model the axial double-well trapping potential U(x) as

U(x) = Ax4 + B(e−Cx2 − 1) . (2)
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The double well potential for A = 5 · 10−7, B = 1, and C = 5. For these

values there are 30 energetic levels (corresponding to 15 doublets) with energy

smaller than the height of the barrier. Energies in units of ~ω⊥, lengths in

units of a⊥ =
√

~/mω⊥. [LS et al., PRA 81, 023614 (2010)]



The single-particle stationary Schrödinger equation of the 1D problem can

be written as
[

− ~2

2m

∂2

∂x2
+ U(x)

]

φα,j(x) = εα,jφα,j(x) , (3)

where φα,j(x) are the complete set of orthonormal eigenfunctions and εα,j the

corresponding eigenenergies. Here α = 1,2,3, ... gives the ordering number of

the doublets of quasi-degenerate states, and j = S, A gives the symmetry of

the eigenfunctions (S means symmetric and A means anti-symmetric).

Due to the symmetry of the problem, it is useful to introduce a complete set

of orthonormal functions

ξα,R(x) =
1√
2
(φα,S(x) + φα,A(x)) , (4)

and

ξα,L(x) =
1√
2
(φα,S(x) − φα,A(x)) . (5)

If we fix the phase of φα,S and φα,A, such that φ′
α,j(+∞) < 0 for both j = S

and j = A then ξα,L and ξα,R are mainly localized in the left and right well

respectively, at least for the low lying states.



The exact many-body Hamiltonian of the system can be written as

Ĥ =
∞
∑

α=1

∑

i=L,R

ε̄α ĉ
†
α,iĉα,i −

∞
∑

α=1

Jα(ĉ
†
α,Lĉα,R + ĉ

†
α,Rĉα,L) , (6)

where n̂F,α,i = ĉ
†
α,iĉα,i is the fermionic number operator of the α-th state in

the i well (i = L, R: L means left and R means right). Here we have

ε̄α =
εα,S + εα,A

2
, (7)

while

Jα =
εα,A − εα,S

2
(8)

is the energy of hopping from the L to the R well within the same doublet

and gives directly the Rabi linear frequency of the α-th doublet as

να =
Jα

π~
. (9)



Exact tunneling dynamics of ideal fermions

The time-dependent density profile nF (x, t) of the Fermi system can be writ-

ten as

nF(x, t) =
∞
∑

α=1

∑

i=L,R

nF,α,i(t) ξα,i(x)
2 , (10)

where nF,α,i(t) = 〈n̂F,α,i(t)〉 = 〈ĉ†α,iĉα,i〉.

Here 〈···〉 is the thermal average obtained with the “unperturbed” Hamiltonian

(Jα = 0), which implies the initial conditions

nF,α,L(0) =
1

eβ (ε̄α−µF,L) + 1
= fα,L , (11)

nF,α,R(0) =
1

eβ (ε̄α−µF,R) + 1
= fα,R , (12)

where the chemical potentials µF,L and µF,R are fixed by the number of

particles in the left and right wells at the initial time (t = 0).



By using the Heisenberg equations of motions of the operators ĉ
†
α,i and ĉα,i

it is not difficult to show that

nF,α,L(t) = fα,L cos2 (πναt) + fα,R sin2 (πναt) , (13)

nF,α,R(t) = fα,R cos2 (πναt) + fα,L sin2 (πναt) . (14)

The population imbalance zα(t) within the α-th double is

zF,α(t) = nF,α,L(t) − nF,α,R(t) = (fα,L − fα,R) cos (2πναt) , (15)

and the total fermionic imbalance ZF (t) is given by

ZF (t) =
1

NF

∞
∑

α=1

zα(t) =
1

N

∞
∑

α=1

(fα,L − fα,R) cos (2πναt) . (16)

We consider 40K atoms with ω⊥ = 160 kHz, which implies a⊥ ' 0.1 µm. In

addition, we set

fα,L = 0 for any α , (17)

i.e. we suppose that initially all fermionic atoms are in the right well.
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Density profile nF (x) and fermionic imbalance ZF (t) of the Fermi gas with

NF = 1. Solid lines: kB T/(~ω⊥) = 0; dashed lines: kB T/(~ω⊥) = 0.05;

dot-dashed lines: kBT/(~ω⊥) = 0.1. Here τ = 1/ν1 = 3378 ω⊥ is the period

related to the Rabi linear frequency ν1 of the lowest doublet. ω⊥ is the

angular frequency of the transverse harmonic confinement. [LS et al., PRA

81, 023614 (2010)]
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Density profile nF (x) and fermionic imbalance ZF (t) of the Fermi gas with

NF = 2. Solid lines: kB T/(~ω⊥) = 0; dashed lines: kB T/(~ω⊥) = 0.1; dot-

dashed lines: kB T/(~ω⊥) = 0.2. Here τ = 1/ν1 = 3378 ω⊥ is the period

related to the Rabi linear frequency µ1 of the lowest doublet. ω⊥ is the

angular frequency of the transverse harmonic confinement. [LS et al., PRA

81, 023614 (2010)]
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Density profile nF (x) and fermionic imbalance ZF (t) of the Fermi gas with

NF = 6. Solid lines: kB T/(~ω⊥) = 0; dashed lines: kB T/(~ω⊥) = 0.1; dot-

dashed lines: kB T/(~ω⊥) = 0.2. Here τ = 1/ν1 = 3378 ω⊥ is the period

related to the Rabi linear frequency ν1 of the lowest doublet. ω⊥ is the

angular frequency of the transverse harmonic confinement. [LS et al., PRA

81, 023614 (2010)]
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Density profile nF (x) vs. fermionic imbalance ZF (t) of the Fermi gas with

NF = 12. Solid lines: kB T/(~ω⊥) = 0; dashed lines: kB T/(~ω⊥) = 0.1;

dot-dashed lines: kB T/(~ω⊥) = 0.3. Here τ = 1/ν1 = 3378 ω⊥ is the period

related to the Rabi linear frequency ν1 of the lowest doublet. ω⊥ is the

angular frequency of the transverse harmonic confinement. [LS et al., PRA

81, 023614 (2010)]



Fermions interacting with a localized BEC

We consider now a spin-polarized fermionic gas in interaction with a Bose-

Einstein condensate (BEC).∗ The dynamics of the mixture can be described

by the following set of coupled equations

i~
∂Ψ

∂t
=

[

− ~2

2m

∂2

∂x2
+ U(x) + gBNB|Ψ|2 + gBFnF

]

Ψ , (18)

i~
∂χj

∂t
=

[

− ~2

2m

∂2

∂x2
+ U(x) + NBgBF |Ψ|2

]

χj , (19)

where nF (x, t) =
∑NF

j=1 |χj(x, t)|2 denotes the fermionic density with χj(x, t)

the set of orthonormal wave functions which satisfy Eq. (19), Ψ(x, t) is the

bosonic wavefunction and such that nB(x, t) = NB|Ψ(x, t)|2 is the bosonic

density with NB the total number of bosons.

∗A similar system has been studied by S F Caballero-Bentez et al., JPB 42, 215308 (2009).



We choose NF = 10, NB = 470, aB/a⊥ = −0.001, and aBF/a⊥ = 0.001.

Under these conditions the bosonic cloud is self-trapped.∗

The nonlinear Schrödinger equations for the fermionic single-particle wave

functions χj(x) can be well approximated by the linear Schrödinger equations

i~
∂χj

∂t
=

[

− ~2

2m

∂2

∂x2
+ U(x) + gBF n̄B(x)

]

χj , (20)

with n̄B(x) denoting the stationary bosonic density. We have numerically

verified that indeed the bosonic cloud is practically stationary.

∗The self-trapping condition for BEC is |aB|NB/a⊥ > (ε1,A − ε1,S)/(~ω⊥).
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Panel a): BEC localized wavefunction Ψ(x) (top curve) for NB = 470 bosons

and NF = 10 fermions with attractive boson-boson and boson-fermion in-

teractions aB/a⊥ = aBF/a⊥ = −0.001. Horizontal lines denote the first 30

fermionic energy levels. Panel b): lowest ten fermionic eigenfunctions χi(x)

(from bottom to top) in the presence (continuous curves) and in the absence

(dotted lines) of the BEC wavefunction depicted in panel a). [LS et al., PRA

81, 023614 (2010)]
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Rabi linear frequency να versus boson-fermion interaction aBF for the first

five fermionic doublets above the ground state with NF = 10. The presence

of BEC, with NB = 470 and aB/a⊥ = −0.001, reduces the quasi-degeneracy

of doublets and this effect is stonger for the lowest doublet [LS et al., PRA

81, 023614 (2010)]
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Fermionic density with NF = 10+Nex, where 10 is the number of fermions in

the ground state and Nex is the number of excited fermions: Nex = 0 (solid

line), Nex = 1 (dotted line), Nex = 2 (dash dotted line), Nex = 3 (dashed

line). [LS et al., PRA 81, 023614 (2010)]
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Dynamics of the fermionic density imbalance ZF (t) (bottom) and correspond-

ing Fourier spectrum (top part of panels). Fermionic cloud of NF = 10+Nex

fermions, where Nex = 1 (a), Nex = 2 (b) and Nex = 3 (c) is the number of

excited fermions. Bosonic cloud of NB = 470 bosons and aB/a⊥ = aBF/a⊥ =

−0.001. [LS et al., PRA 81, 023614 (2010)]



Conclusions

• We have investigated the tunneling dynamics of spin-polarized (ideal)

fermions.

• Despite the fermions are not interacting the dynamics is quite com-

plex: from periodic to strongly aperiodic by increasing the number NF

of fermions.

• The temperature T produces a spatial broadening of density profiles.

• We have also studied tunneling dynamics of fermions interacting with a

localized BEC.

• The presence of a localized BEC modifies the Rabi frequencies να of

fermions.


