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Spin-polarized fermions in double-well

We consider a confined dilute and ultracold spin-polarized gas of N fermionic
atoms of mass m in a double-well potential.® In practice: an ideal Fermi gas
because the s-wave interaction of two particle with the same spin is forbidden
by Fermi statistics.

The trapping potential of the system is given by

V() = U@) + omed (5 + 22) (1)

We suppose that the system is one-dimensional (1D), due to a strong radial
transverse harmonic confinement, with a symmetric double-well trapping po-
tential in the longitudinal axial direction, that we will denote by U(x). Thus,
the transverse energy hw | is much larger than the characteristic energy of
fermions in the axial direction.

*A similar system has beeen studied by S. Zollner et al.,, PRL 100, 040401 (2008); K.
Ziegler, PRA 81, 034701 (2010).



We model the axial double-well trapping potential U(xz) as

2
U(x) = Az* + B(e %" —1) . (2)
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The double well potential for A =5-10"7, B =1, and C = 5. For these
values there are 30 energetic levels (corresponding to 15 doublets) with energy
smaller than the height of the barrier. Energies in units of hw , lengths in
units of a| = /A/mw . [LS et al., PRA 81, 023614 (2010)]



The single-particle stationary Schrodinger equation of the 1D problem can
be written as
B2 92

oo T U @) | 6a,j(2) = €a,jda,;(x) (3)

where ¢, ;(z) are the complete set of orthonormal eigenfunctions and ¢, ; the
corresponding eigenenergies. Here aa = 1,2, 3, ... gives the ordering number of
the doublets of quasi-degenerate states, and 57 = S, A gives the symmetry of
the eigenfunctions (S means symmetric and A means anti-symmetric).

Due to the symmetry of the problem, it is useful to introduce a complete set
of orthonormal functions

£ m(z) = %(%,S(%’) + boa(@)) (4)
and
b 1(2) = %wa,g(w) ~ ban(@)) . (5)

If we fix the phase of ¢, g and ¢, 4, such that qbgéj(—l—oo) < 0 for both 57 =85
and j = A then &, 1, and £, r are mainly localized in the left and right well
respectively, at least for the low lying states.



The exact many-body Hamiltonian of the system can be written as

o o
A=Y Y el fai— Y Ja(@ fanr+e plaL) (6)
a=1:=L,R a=1
where np, ; = EL iCa,i 1S the fermionic number operator of the a-th state in
the i well (i = L, R: L means left and R means right). Here we have

Ea — 6Oé,S _I_ 604,14 : (7)
2
while
€ — €
Ja — Oé,A 2 Oé,S (8)

is the energy of hopping from the L to the R well within the same doublet
and gives directly the Rabi linear frequency of the a-th doublet as

_Ja
- h’

(9)
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Exact tunneling dynamics of ideal fermions

The time-dependent density profile np(x,t) of the Fermi system can be writ-
ten as

np(z, ) = > Y npai(t) &ai@)?, (10)

a=1:=L,R

where npq ;(t) = (fipa,i(t)) = (&) ;).

Here (---) is the thermal average obtained with the “unperturbed” Hamiltonian
(Jo = 0), which implies the initial conditions

1

nF,Oz,L(O) — 65 (Eoz_MF,L) 11 — fa,L ) (11)
1

nF,a,R(O) — — fa,R ) (12)

eﬁ (Ea—MF,R) +1

where the chemical potentials pup; and pppr are fixed by the number of
particles in the left and right wells at the initial time (¢ = 0).



By using the Heisenberg equations of motions of the operators Ejm and 5@,2'
it is not difficult to show that

npaL(t) = far €OS% (1vat) + for SiN? (7vat) (13)
nro.r(t) = fa.R cos? (mvat) + fa,L sin? (mrat) . (14)

The population imbalance zo(t) within the a-th double is
zpa(t) =npo (t) —npa r(t) = (fo.r — fa,r) COS(27vat) , (15)
and the total fermionic imbalance Zg(t) is given by

Zp(t) = — Z za(t) = — Z (fa.r — fa,r) COS(2mrat) . (16)

Fal

We consider 49K atoms with w|] = 160 kHz, which implies a; ~ 0.1 pum. In
addition, we set

far =20 for any o, (17)

i.e. we suppose that initially all fermionic atoms are in the right well.



[ [T
0.1F t/1=0 0.1} t/1=0.5
=
F~0.05} 0.05|-
oL 1 OI.".gﬁt»Jl
40 20 0 40 20 0 20 40
I I I I T 17 T 17 T 1T T 1
0.1Ft/1=0.75 0.1Ftit=1
=<
T
~0.05} 0.05]-
O ] L /7 | | '-:\I ] 0 ] |4':|‘ S AN X | '\\cu ] I I I I —
40 20 0 20 40 40 20 0 20 40 1500 300(% 4500 6000
X X

Density profile nyp(z) and fermionic imbalance Zp(t) of the Fermi gas with
Nrp = 1. Solid lines: kgT/(hw,;) = 0; dashed lines: kgT/(hw,;) = 0.05;
dot-dashed lines: kT /(hw,;) = 0.1. Here 7 = 1/v; = 3378 w is the period
related to the Rabi linear frequency vy of the lowest doublet. w;| is the
angular frequency of the transverse harmonic confinement. [LS et al., PRA
81, 023614 (2010)]
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Density profile np(z) and fermionic imbalance Zp(t) of the Fermi gas with
Np = 2. Solid lines: kpT/(hw ) = 0; dashed lines: kgT/(hw,;) = 0.1; dot-
dashed lines: kgT/(hw;) = 0.2. Here 7 = 1/v; = 3378 w, is the period
related to the Rabi linear frequency wp; of the lowest doublet. w,| is the
angular frequency of the transverse harmonic confinement. [LS et al., PRA
81, 023614 (2010)]



0 L \_AJ L
-40 20 0 20
T T T 7T T T T

- t/1=0.75

" | . | . | . I
10 200 20 40 1500 300(% 4500 6000

Density profile np(z) and fermionic imbalance Zp(t) of the Fermi gas with
Np = 6. Solid lines: kpT/(hw|) = 0; dashed lines: kgT/(hw,;) = 0.1; dot-
dashed lines: kgT/(hw;) = 0.2. Here 7 = 1/v; = 3378 w, is the period
related to the Rabi linear frequency v; of the lowest doublet. w;| is the
angular frequency of the transverse harmonic confinement. [LS et al., PRA
81, 023614 (2010)]
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Density profile ngp(x) vs. fermionic imbalance Zp(t) of the Fermi gas with
kpT/(hw,) = 0; dashed lines:
dot-dashed lines: kgT/(hw;) = 0.3. Here 7 = 1/v7 = 3378 w, is the period
related to the Rabi linear frequency vi of the lowest doublet.
angular frequency of the transverse harmonic confinement. [LS et al., PRA

Np = 12.

81, 023614 (2010)]
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Fermions interacting with a localized BEC

We consider now a spin-polarized fermionic gas in interaction with a Bose-

Einstein condensate (BEC).* The dynamics of the mixture can be described
by the following set of coupled equations

oWV K2 82 X
"ot = | 2m v Np|w W 18
ot [ 2m8a;2+ (z) + 9pNp|VI[* + gppnp , (18)
X h2 92
’ ot [ 2m8x2+ (z) + Ngpr|W| Xj s (19)

where np(x,t) = Zj\f:Fl |Xj(a:,t)|2 denotes the fermionic density with x;(z,t)
the set of orthonormal wave functions which satisfy Eq. (19), W(x,t) is the
bosonic wavefunction and such that ng(z,t) = Ng|W(x,t)|? is the bosonic
density with Npg the total number of bosons.

*A similar system has been studied by S F Caballero-Bentez et al., JPB 42, 215308 (2009).



We choose Np = 10, Ng = 470, ag/a; = —0.001, and aggr/a; = 0.001.
Under these conditions the bosonic cloud is self-trapped.*

The nonlinear Schrodinger equations for the fermionic single-particle wave
functions Xj(a:) can be well approximated by the linear Schrodinger equations

Ox h? 02 _
Zhﬁ = T o 922 + U(x) + gprnp(x) Xj o (20)

with ng(x) denoting the stationary bosonic density. We have numerically
verified that indeed the bosonic cloud is practically stationary.

*The self-trapping condition for BEC is |ap|Np/a; > (e1,4 —€1,5)/(hw).



30 15 o 15 30 30 -20 -10 0 10 20 30
X X

Panel a): BEC localized wavefunction W(z) (top curve) for Ng = 470 bosons
and Np = 10 fermions with attractive boson-boson and boson-fermion in-
teractions agp/a; = agpp/a; = —0.001. Horizontal lines denote the first 30
fermionic energy levels. Panel b): lowest ten fermionic eigenfunctions y;(x)
(from bottom to top) in the presence (continuous curves) and in the absence
(dotted lines) of the BEC wavefunction depicted in panel a). [LS et al., PRA

81, 023614 (2010)]
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Rabi linear frequency v, versus boson-fermion interaction agp for the first
five fermionic doublets above the ground state with Np = 10. The presence
of BEC, with Ng =470 and ag/a; = —0.001, reduces the quasi-degeneracy
of doublets and this effect is stonger for the lowest doublet [LS et al., PRA

81, 023614 (2010)]
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Fermionic density with Np = 10+ Negz, where 10 is the number of fermions in
the ground state and Ngy; is the number of excited fermions: Nep = 0 (solid
line), Nex = 1 (dotted line), Ner = 2 (dash dotted line), Ner = 3 (dashed
line). [LS et al., PRA 81, 023614 (2010)]
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Dynamics of the fermionic density imbalance Zgx(t) (bottom) and correspond-
ing Fourier spectrum (top part of panels). Fermionic cloud of Np = 10 + Ney
fermions, where Nepx; = 1 (2), Nex = 2 (b) and Nepz = 3 (¢) is the number of
excited fermions. Bosonic cloud of Ng = 470 bosons and ag/a| = app/a| =

—0.001. [LS et al., PRA 81, 023614 (2010)]



Conclusions

We have investigated the tunneling dynamics of spin-polarized (ideal)
fermions.

Despite the fermions are not interacting the dynamics is quite com-
plex: from periodic to strongly aperiodic by increasing the number Ng
of fermions.

The temperature T produces a spatial broadening of density profiles.

We have also studied tunneling dynamics of fermions interacting with a
localized BEC.

The presence of a localized BEC modifies the Rabi frequencies v, of
fermions.



