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Brief historical introduction (I)

In 1924 Wolfgang Pauli introduced the concept of spin. Now we know
that any particle has an intrinsic angular momentum, called spin
~S = (Sx ,Sy ,Sz), characterized by two quantum numbers s ed ms , where
for s fixed one has ms = −s,−s + 1, ..., s − 1, s, and in addition

Sz = ms~ ,

with ~ (1.054 · 10−34 Joule×seconds) the reduced Planck constant.
In honour of Satyendra Nath Bose and Enrico Fermi all the particles are
now divided into two groups:
– bosons, characterized by an integer s:

s = 0, 1, 2, 3, ...

– fermions, characterized by a half-integer s:

s =
1

2
,

3

2
,

5

2
,

7

2
, ...

Examples: the photon is a boson (s = 1, ms = −1, 1), while the electron
is a fermion (s = 1

2 , ms = − 1
2 ,

1
2 ).

Among “not elementary particles”: helium 4
2He is a boson (s = 0,

ms = 0), while helium 3
2He is a fermion (s = 1

2 , ms = − 1
2 ,

1
2 ).



Brief historical introduction (II)

A fundamental experimental and theoretical1 result: identical bosons and
identical fermions have a very different behavior!!
– Identical bosons can occupy the same single-particle quantum state, i.e.
thay can stay together; if all bosons are in the same single-particle
quantum state one has Bose-Einstein condensation.
– Identical fermions CANNOT occupy the same single-particle quantum
state, i.e. they somehow repel each other: Pauli exclusion principle.

Identical bosons (a) and identical spin-polarized fermions (b) in a
harmonic trap at very low temperature.

1Spin-statistics theorem [Markus Friez 1939; Wolfgang Pauli 1940].



Brief historical introduction (III)

In 1995 Eric Cornell, Carl Wieman e Wolfgang Ketterle [Nobel Prize in
Physics 2001] achieved Bose-Einstein condensation (BEC) cooling gases
of 87Rb and 23Na atoms.
For these bosonic systems, which are very dilute and ultracold, the
critical temperature to reach the BEC is about TBEC ' 100 nanoKelvin.

Density profiles of a gas of Rubidium atoms: formation of the Bose-Einstein
condensate. For an atom of 87Rb the total nuclear spin is I = 3

2
, the total

electronic spin is S = 1
2
, and the total atomic spin is F = 1 o F = 2: the

neutral 87Rb atom is a boson.



Brief historical introduction (IV)

An interesting consequence of Bose-Einstein condensation with ultracold
atoms is the possibility to generate quantized vortices: the system is
superfluid!

Formation of quantized vortices in a condensed gas of 87Rb atoms. The number

of vortices increases by increasing the rotational frequency of the system.



Unitary Fermi gas (I)

In 2004 the 3D BCS-BEC crossover has been observed with ultracold
gases of two-component fermionic 40K or 6Li atoms.2

This crossover is obtained by using a Fano-Feshbach resonance to change
the strength of the effective inter-atomic attraction and, consequently,
the 3D s-wave scattering length a. Unitary Fermi gas: a→ ±∞.

2C.A. Regal et al., PRL 92, 040403 (2004); M.W. Zwierlein et al., PRL 92, 120403
(2004); J. Kinast et al., PRL 92, 150402 (2004).



Unitary Fermi gas (II)

Let us consider a gas of atomic fermions with two equally-populated
spin components: n↑ = n↓. The system is dilute if the characteristic
range re of the inter-atomic potential is much smaller than the average
interparticle separation d = n−1/3 with total number density n = n↑ + n↓,
namely

re � d . (1)

The system is strongly-interacting if the scattering length a of the
inter-atomic potential greatly exceeds the average interparticle separation
d = n−1/3, i.e.

d � |a| . (2)

The unitarity regime3 is characterized by both these conditions:

re � d � |a| . (3)

Under these conditions the dilute but strongly-interacting Fermi gas is
called unitary Fermi gas.

3S. Giorgini, L.P. Pitaevskii, and S. Stringari, Rev. Mod. Phys. 80, 1215 (2008).



Unitary Fermi gas (III)

Ideally, the unitarity limit corresponds to

re = 0 and a = ±∞ . (4)

In a uniform configuration and at zero temperature, the only length
characterizing the Fermi gas in the unitarity limit is the average
interparticle distance d = n−1/3.
In this case the ground-state energy must be4

Egs = ξ
3

5

~2

2m
(3π2)2/3n2/3N = ξ

3

5
εFN (5)

with εF = ~2

2m (3π2)2/3n2/3 Fermi energy of the ideal gas and ξ a universal
unknown parameter: Bertsch parameter.
Monte Carlo calculations and experimental data with dilute and ultracold
atoms suggest that, at zero temperature, the unitary Fermi gas is a
superfuid with ξ ' 0.4.

4W. Zwerger (Ed.), The BCS-BEC Crossover and the Unitary Fermi Gas (Springer,
2011). Simply for dimensional reasons.



Single-particle and collective excitations (I)

Inspired by the Landau theory of elementary excitations we model the
many-body quantum Hamiltonian Ĥ of the uniform unitary Fermi gas
with the simple effective Hamiltonian

Ĥ = Egs +
∑
σ=↑,↓

∑
k

εsp(k) ĉ†kσ ĉkσ +
∑

q

εcol(q) b̂†qb̂q , (6)

where
the ĉ†kσ (ĉkσ) operator creates (annihilates) a single-particle excitation,
respectively, with linear momentum k, spin σ, and energy εsp(k),
whereas
the b̂†q (b̂q) operator creates (annihilates) a bosonic collective excitation,
respectively, of linear momentum q and energy εcol(q).



Single-particle and collective excitations (II)

The dispersion of the BCS-like single-particle elementary excitations can
be written as

εsp(k) =

√(
~2k2

2m
− ζεF

)2

+ ∆2
0 (7)

where ζ is a parameter taking into account the interaction between
fermions and the reconstruction of the Fermi surface close to the critical
temperature. In particular, ζ = 0.9 according5 to accurate Monte Carlo
results. Moreover, ∆0 is the gap parameter, with 2∆0 the minimal
energy to break a Cooper pair. The gap energy ∆0 of the unitary Fermi
gas at zero-temperature has been calculated with Monte Carlo
simulations6 and found to be

∆0 = γεF (8)

with γ = 0.45.

5P. Magierski, G. Wlazlowski, A. Bulgac, and J. E. Drut, Phys. Rev. Lett. 103,
210403 (2009).

6J. Carlson and S. Reddy, Phys. Rev. Lett. 95, 060401 (2005).



Single-particle and collective excitations (III)

The dispersion relation of collective elementary excitations is assumed to
be given by

εcol(q) =

√
~2q2

2m

(
2mc2

B + λ
~2q2

2m

)
, (9)

where cB =
√
ξ/3 vF is the Bogoliubov sound velocity with

vF =
√

2εF/m the Fermi velocity of a non-interacting Fermi gas.
In a old paper [LS, Phys. Rev. A 82, 063619 (2010)] we used the value
λ = 0.25, which is consistent with a macroscopic time-dependent
nonlinear Schrödinger equation approach without the inclusion of
spurious terms.7

In a recent paper [G. Bighin, A. Cappellaro, and LS, Phys. Rev. A 105,
063329 (2022)] we have used instead λ = 0.08, which is the value
obtained8 from the beyond-mean-field GPF theory9 at unitarity.

7LS and F. Toigo, Phys. Rev. A 78, 053626 (2010).
8G. Bighin, LS, P. A. Marchetti, and F. Toigo, Phys. Rev. A 92, 023638 (2015).
9J. Tempere and J. P. Devreese, Superconductors: Materials, Properties and

Applications, InTech 383 (2012).



Universal thermodynamics (I)

In the canonical ensemble the Helmholtz free energy F of the system is
obtained from the partition function Z as follows

Z = Tr[e−Ĥ/(kBT )] = e−F/(kBT ) . (10)

Similarly to Eq. (6), the free energy of the unitary Fermi gas can be
written as

F = Fgs + Fsp + Fcol , (11)

where Fgs is the free energy of the ground-state,

Fsp = −2kBT
∑

k

ln[1 + e−εsp(k)/(kBT )] (12)

is the free energy of fermionic single-particle excitations and finally

Fcol = −kBT
∑

q

ln[1− e−εcol(q)/(kBT )] (13)

is the free energy of the bosonic collective excitations.



Universal thermodynamics (II)

The total Helmholtz free energy F of a unitary Fermi gas in the
superfluid phase can be then written10 as

F = NεFΦ(x) , (14)

where, due to the scale-invariance of the system, Φ(x) is a function of
the scaled temperature x ≡ T/TF only, having defined the Fermi
temperature TF = εF/kB . Explicitly, Φ(x) takes the following form

Φ(x) =
3

5
ξ − 3x

∫ +∞

0

ln
[
1 + e−ε̃sp(u)/x

]
u2du

+
3

2
x

∫ +∞

0

ln
[
1− e−ε̃col(u)/x

]
u2du . (15)

Note that the discrete summations have been replaced by integrals, and
that we set ε̃col(u) =

√
u2(4ξ/3 + λu2) and ε̃sp(u) =

√
(u2 − ζ)2 + γ2.

10LS, Phys. Rev. A 82, 063619 (2010).



Universal thermodynamics (III)

We now aim at calculating the thermodynamics of the system in terms of
the universal function Φ(x) and its derivatives. From the Helmholtz
free energy F we can immediately obtain the chemical potential µ, that
is defined as

µ =

(
∂F

∂N

)
T ,V

= εF

[5

3
Φ

(
T

TF

)
− 2

3

T

TF
Φ′
(

T

TF

)]
, (16)

where Φ′(x) = dΦ(x)
dx and one recovers µ0 = ξεF in the limit of

zero-temperature.
The entropy S is readily calculated from the free energy F through the
relation

S = −
(
∂F

∂T

)
N,V

= −NkBΦ′(x) . (17)

where Φ′(x) is the first derivative of Φ with respect to x .



Universal thermodynamics (IV)

Furthermore, the internal energy E = F + TS , can immediately be
rewritten as

E = NεF [Φ(x)− x Φ′(x)] (18)

and, similarly, the pressure P is related to the free energy F by the simple
relation

P = −
(
∂F

∂V

)
N,T

=
2

3
nεF [Φ(x)− xΦ′(x)] . (19)

Remark: Adopting the Maxwell-Boltzmann distribution for fermionic
single-particles instead of the Fermi-Dirac one, and under the further
assumption that λ = 0, the adimensional fee energy becomes

Φ(x) ' 3

5
ξ − π4

√
3

80 ξ3/2
x4 − 3

√
2π

2
ζ1/2γ1/2x3/2e−γ/x . (20)

This expression was proposed by Bulgac, Drut and Magierski.11 We call
this equation the BDM model.

11A. Bulgac, J.E. Drut, and P. Magierski, Phys. Rev. Lett 96, 090404 (2006).



Universal thermodynamics (V)
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Thermodynamical quantities of the unitary Fermi gas deduced from our model
as a function of the adimensional temperature T/TF with TF = εF/kB the
Fermi temperature. Plot taken from LS, Phys. Rev. A 82, 063619 (2010),
where ξ = 0.42, λ = 0.25, ζ = 0.9, and γ = 0.45.



Universal thermodynamics (VI)
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Scaled internal energy E/(NεF ) as a function of the scaled temperature T/TF .
Filled circles: Monte Carlo simulations [Phys. Rev. A 78, 023625 (2008)].
Open squares with error bars: experimental data [Science 442, 327 (2010)].
Solid line: our model with ξ = 0.42, λ = 0.25, ζ = 0.9, and γ = 0.45. Dashed
line: Bulgac-Drut-Magierski (BDM) model. Plot taken from LS, Phys. Rev. A
82, 063619 (2010).



Superfluid fraction and critical temperature (I)

For a viscous fluid with a quite generic zero-temperature bulk chemical
potential µ(n) the equations of viscous hydrodynamics are given by

∂

∂t
n + ∇ · (n v) = 0

m
∂

∂t
v + ∇

[
1

2
mv2 + µ(n)

]
= η∇2v + mv ∧ (∇ ∧ v)

where n is the local number density and v is the local velocity. Here η is
the viscosity and a rotational term appears. These equations are called
Navier-Stokes equations.
One obtains the zero-temperature equations of superfluid hydrodynamics,
where the local number density n coincides with the superfluid density ns
and the local velocity v coincides with the superfluid velocity vs , setting

η = 0 , (21)

∇ ∧ v = 0 . (22)



Superfluid fraction and critical temperature (II)

Thus, the T = 0 equations of superfluid hydrodynamics are given by

∂

∂t
ns + ∇ · (ns vs) = 0

m
∂

∂t
vs + ∇

[
1

2
mv2

s + µ(ns)

]
= 0 .

Within the superfluid hydrodynamics quantum effects are encoded not
only in the equation of state, i.e. µ = µ(ns), but also into the properties
of the local velocity field vs(r, t): it is proportional to the gradient of a
scalar field, θ(r, t), that is the angle of the phase of a single-valued
complex wavefunction ψ(r, t).
In other words, vs(r, t) must satisfy the equation∮

C
vs · dr =

~
m

∮
C
∇θ · dr =

~
m

∮
C
dθ =

~
m

2π k (23)

for any closed contour C, with k an integer number. The circulation is
quantized in units of ~/m, and this property is strictly related to the
existence of quantized vortices.



Superfluid fraction and critical temperature (III)

At finite temperature T , the equations of superfluid hydrodynamics are
much more complicated because they involve several fields: the superfluid
density ns , the normal density nn, the superfluid velocity vs and the
normal velocity vn.
According to Landau’s two-fluid theory12 the total number density n of a
system in the superfluid phase can be written as

n = ns + nn , (24)

where ns is the superfluid density and nn is the normal density.
Naturally, at zero temperature the whole system is in the superfluid
phase, and one has nn = 0 and n = ns. As the temperature T increases,
the normal density nn increases, as well, until at the critical temperature
Tc one has nn = n and, correspondingly, ns = 0.

12L.D. Landau, J. Phys. (USSR) 5, 71 (1941).



Superfluid fraction and critical temperature (IV)

Within our scheme, the normal density of a unitary gas is given the sum
of two contributions

nn = nn,sp + nn,sp , (25)

i.e. a contribution nn,sp from to the single-particle excitations and a
contribution nn,col from collective excitations.
At thermal equilibrium, Landau was able to connect13 the normal
densities to their quantum statistics and to their energy spectrum.
In the present case the single-particle contribution to the normal density
reads

nn,sp =
1

kBTV

∑
k

k2 eεsp(k)/(kBT )

(eεsp(k)/(kBT ) + 1)2
, (26)

whereas, concerning the contribution from the collective modes,

nn,col =
1

2kBTV

∑
q

q2 eεcol(q)/(kBT )

(eεcol(q)/(kBT ) − 1)2
. (27)

13L.D. Landau, J. Phys. (USSR) 5, 71 (1941).



Superfluid fraction and critical temperature (V)

It is then easy to derive the superfluid fraction

ns

n
= 1−N (x) , (28)

where the universal function N (x) of the normal fraction is again a
function of the scaled temperature x ≡ T/TF only, explicitly given by

N (x) =
2

x

∫ +∞

0

e ε̃sp(η)/x

(e ε̃sp(η)/x + 1)2
η4dη

+
1

x

∫ +∞

0

e ε̃col(η)/x

(e ε̃col(η)/x − 1)2
η4dη , (29)

where we have converted sums to integrals.



Superfluid fraction and critical temperature (VI)

The superfluid density defines the critical temperature Tc of the
superfluid-to-normal phase transition via the condition ns = 0. With our
choice of parameters for the elementary excitations we find

Tc = 0.23 TF . (30)

It must be pointed out that, while this estimation of the critical
temperature agrees with more refined approaches, such as the functional
GPF theory14 or the NSR scheme,15 it actually differs from the most
recent experimental results,16 placing it at Tc/TF ' 0.17.
The overestimation of our theoretical critical temperature with respect to
the experimental ones does not appear plotting the physical quantities vs
T/Tc .

14H. Hu, X. J. Liu, and P. D. Drummond, EPL 74, 574 (2007); J. Tempere and J.
P. Devreese, Superconductors: Materials, Properties and Applications, InTech 383
(2012).

15P. Nozieres and S. Schmitt-Rink, J. Low. Temp. Phys. 59, 195 (1985).
16X. Li et al., Science 375, 528 (2022).



Superfluid fraction and critical temperature (VII)

Superfluid fraction ns/n as a function of the adimensional temperature T/Tc .
Comparison between our theory and recent experimental data [X. Li et al.,
Science 375, 528 (2022)]. Plot adapted from G. Bighin, A. Cappellaro, and LS,
Phys. Rev. A 105, 063329 (2022), where ξ = 0.38, λ = 0.08, ζ = 0.9, and
γ = 0.45.



First and second sound (I)

According to Landau’s two-fluid equations, in a superfluid a local
perturbation excites two wave-like modes, the first and the second sound,
which propagate with velocities u1 and u2. These velocities are
determined by the positive solutions of the algebraic biquadratic equation

u4 + (c2
10 + c2

20)u2 + c2
T c

2
20 = 0 , (31)

where

c10 =

√
1

m

(
∂P

∂n

)
S̄,V

= vF

√
5

9
Φ(x)− 5

9

T

TF
Φ′(x) (32)

is the adiabatic sound velocity with S̄ = S/N the entropy per particle,

c20 =

√√√√ 1

m

S̄2(
∂S̄
∂T

)
N,V

ns

nn
= vF

√
−1

2

Φ′(x)2

Φ′′(x)

1− Ξ(x)

Ξ(x)
(33)

is the entropic sound velocity, and

cT =

√
1

m

(
∂P

∂n

)
T ,V

= vF

√
5

9

(
Φ(x)− T

TF
Φ′(x)

)
+

2

9
x2Φ′′(x) (34)

is the isothermal sound velocity.



First and second sound (II)

The first sound u1 is the largest of the two positive roots of Eq. (31)
while the second sound u2 is the smallest positive one. Thus

u1,2 =

√√√√c2
10 + c2

20

2
±

√(
c2

10 + c2
20

2

)2

− c2
20c

2
T . (35)

For the sake of completeness, we stress that the “Einstein-like relation”

E

N
=

10

9
mc2

10 (36)

derived in a recent paper17 is automatically verified within our universal
thermodynamic formalism, that naturally includes the scale-invariance of
the unitary Fermi gas.

17P. B. Patel et al., Science 370, 1222 (2020).



First and second sound (III)

First sound velocity u1 and second sound velocity u2 as a function of the
adimensional temperature T/Tc . Here vF =

√
2εF/m is the Fermi velocity.

Comparison between our theory and recent experimental data [X. Li et al.,
Science 375, 528 (2022)]. “No mixing” means the (wrong) assumption that
cT = c10. Plot adapted from G. Bighin, A. Cappellaro, and LS, Phys. Rev. A
105, 063329 (2022).



Density perturbation and sound mixing (I)

It is useful to analyze the first sound amplitude W1 and the second sound
amplitude W2 of the response to a density perturbation, i.e.

δn(x , t) = W1δn1(x ± u1t) + W2δn2(x ± u2t) (37)

In 2014 Ozawa and Stringari18 obtained the following remarkable
formulas for a generic superfluid

W1

W1 + W2
=

(u2
1 − c2

20) u2
2

(u2
1 − u2

2) c2
20

(38)

and
W2

W1 + W2
=

(c2
20 − u2

2) u2
1

(u2
1 − u2

2) c2
20

(39)

which give W1 and W2 in terms of three velocities: the first sound
velocity u1, the second sound velocity u2, the entropic sound velocity c20.

18T. Ozawa and S. Stringari, Phys. Rev. Lett. 112, 025302 (2014).



Density perturbation and sound mixing (II)

Superfluid 4He is characterized by “no mode mixing”, i.e. c10 ' cT : the
first sound corresponds to a standard density wave with u1 ' c10 ' cT
and the second sound is understood as an entropy wave with u1 ' c20.

Thus, under the strict “no mode mixing” condition c10 = cT , Eqs. (38)
and (39) give W1 = 1 and W2 = 0. This means that, in this case, a
density probe excites only the first sound mode.

For the unitary Fermi gas the situation is radically different19 because the
isothermal velocity cT and the adiabatic velocity c10 are not always close
each other. Indeed, we find that, in general, W1 6= 1 and W2 6= 0 for the
unitary Fermi gas.

19L. P. Pitaevskii and S. Stringari, pp. 322-347, in Universal Themes of
Bose-Einstein Condensation Edited by N.P. Proukakis, D.W. Snoke, and P.B.
Littlewood (Cambridge University Press, 2017).



Density perturbation and sound mixing (III)
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Contribution from the first (dashed red line) and second sound (solid blue line)
to the amplitude of a density response as a function of the scaled temperature
T/Tc . Figure adapted from G. Bighin, A. Cappellaro, and LS, Phys. Rev. A
105, 063329 (2022).



Conclusions

A simple description in terms of fermionic single-particle and bosonic
collective elementary excitations is able to reproduce many
properties of the unitary Fermi gas.

The internal energy derived from our model is in good agreement
with Monte Carlo simulations and experimental results for
T ≤ 0.25TF .

We have reproduced the recently-measured superfluid fraction, first
sound and second sound near the critical temperature Tc ' 0.2TF .

Contrary to Helium 4, near the critical temperature the first and
second sound of the unitary Fermi gas cannot be interpreted as a
pure pressure-density wave and a pure entropy-temperature wave,
respectively.

Our investigation of the unitary Fermi gas shows that at very low
temperatures the mixing of pressure-density and
entropy-temperature oscillations is absent, whereas approaching Tc

a density probe will excite both sounds.
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