Finite-temperature coherence and entanglement
in asymmetric bosonic Josephson junctions

Luca Salasnich*

in collaboration with
M. Ferraretto and C. Vianello

*Dipartimento di Fisica e Astronomia “Galileo Galilei”, Universita di Padova,
INFN, Sezione di Padova,
INO-CNR, Unita di Sesto Fiorentino (Firenze)

Classical and Quantum Complexity in Statistical Mechanics,
Molveno (Trento), July 21, 2025



Summary

e Two-site Bose-Hubbard model

e Semiclassical approximation

e Semiclassical approximation at finite temperature
e Exact diagonalization: Thermal equilibrium

e Coherence visibility: Exact vs semiclassical

e Population imbalance: Exact vs semiclassical

e Entanglement entropy: Exact without semiclassical

e Conclusions



Two-site Bose-Hubbard model

A system of N interacting bosons confined by an asymmetric double-well
potential can be described by the two-site Bose-Hubbard model

N U ~ =~ A N N
H = —J(4 4r + 4540) + > (NN = 1) + Rip (Rl — 1)] + %(NL —Rg) (1)

with J > 0 the tunneling (hopping) energy, U the boson-boson interaction, and
€ the on-site energy asymmetry.

The mean-field approximation is obtained by using Glauber coherent states

[ib(t)) = lew(t))lar(t))r (2)
where |a;) is the eigenstate of the annihilation operator §;, with complex
eigenvalue _

aj(t) = v/Nj(t) eV (3)

where N;(t) = (N;) is the average number of bosons in the site j = L, R and
0;(t) is the corresponding phase.



Two site Bose-Hubbard model

One can also introduce! the relative phase
0(t) = Or(t) — 0u(1) (4)
and the normalized population imbalance

2() = MR gy (5)

Here N = N (t) + Ng(t) is a constant of motion.
Quite remarkably, z(t) is canonically conjugate to 6(t). In particular, defining

the canonical momentum EN
polt) = 5-2(2) (6)

~ U / 4
H=(A)= h2p§+h = IN\J1 = o515 5 cos(0) (7)

we get

A Smerzi, S Fantoni, S Giovanazzi, SR Shenoy Phys. Rev. Lett. 79, 4950 (1997).



Semiclassical approximation

Under the assumption that the relative population imbalance is small
(|z(t)| < 1) we get the semiclassical Josephson Hamiltonian?

U
Hi= s —ps+ - S po — IN cos(6) . (8)

The semiclassical dynamics of H, is given by the Hamilton equations

. OH, _2U e
O = p = Pt %)
po = —%:—JNsin(Q) (10)

2K. Furutani, J. Tempere, LS, Phys. Rev. B 105, 134510 (2022).



Semiclassical approximation

In the case of small oscillations around z = 0 and § = 0 from the corresponding
linearized Hamilton equations

b= =t (11)
po = =g (12)
one gets
6(t) + wj6(t) =0 (13)
with Josephson frequency
wy = @ (14)

of harmonic oscillation around the balanced configuration.



Semiclassical approximation at finite temperature

At low energies the equilibrium distribution f(py, 6) of quantum-thermal
states is essentially that of an harmonic oscillator with Josephson frequency wy,
provided that U > 0. This distribution

f(po,0) = % e H(po.0)/ (ke Tetr) (15)

differs from the Maxwell-Boltzmann distribution by the fact that the
temperature T of the bath is replaced by®

heo, heo,
Tur = 199 Coth , 1
= ok <" (2kBT> (16)

where Teg — T for kg T > hw; while Teg — hw;/2 for kg T < hwj.
This provides us with a semiclassical approximation for the thermal averages
of observables:

AN /2
A —Hy(pg,0)/ (ks Tetr)
0)=2 / Rz / d0 O(ps, 0) e . (17)

3K. Furutani and LS, AAPPS Bull. 33, 19 (2023).



Exact diagonalization: Thermal equilibrium

At fixed N, the diagoniilization4 of the (N 4+ 1) x (N + 1) matrix associated to
the full Hamiltonian H gives N + 1 eigenvalues E, and N + 1 eigenstates |E,).
At thermal equilibrium with a bath of temperature T the density matrix reads

N

1 .
:Eze E/(kBT)|E E, ‘_Zp’f (N = DYrUIL(N — j|r (18)

n=| i,j=0

where | E,) = 3% o c”|i).|N — )& and

=

1 —Enan
pi= 5> e BN () (19)

n=0

The diagonal elements p; = (|ci[?) = SV, |c )|2e=En/(8T) ) Z represent the
average weights of the Fock states | i, N — i) in the statistical ensemble.
Thermal averages are computed as

N

(O)=Tr[pOl =Y ps(i N=i|Oj,N~j) (20)

i,j=0

4G. Mazzarella, LS, A. Parola, F. Toigo, Phys. Rev. A 83, 053607 (2011).



Exact diagonalization: Thermal equilibrium

The ground state of the problem

N

Eo) = > cViyeIN — i)r (21)

i=1

is such that (with N even and ¢ = 0)
N, N
|Eo) = [5)tl5 - (22)

for U/J > 1. This is the so-called twin-Fock state. Instead
1
V2

for U/J <« —1. This is the so-called NOON state (Schrédinger cat).
For U = 0 we have

[Eo) = —= (IN)1[0)& + |0) .| N)R) (23)

|Eo) = |ACS) (24)
with |ACS) the atomic coherent state, where the coefficient cj(o) are Gaussian
distributed around i/N = 1/2. For N — N we has |ACS) — |GCS) that is the

Glauber coherent state.



Exact diagonalization: Thermal equilibrium
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Thermal average p; = (|c;|?) of Fock weights as a function of i/N , plotted
for N = 50 and three values of U/J: 1 (solid orange line), 0 (dashed green
line), —0.2 (dashed-dotted cyan line) at different temperatures T. Left:

e/J =0; right: ¢/J =0.2.



Coherence visibility: Exact vs semiclassical

The coherence of our system can be characterized in terms of the quantity

2(a}4r)
= 25
o= (25)
called coherence visibility.®> This is related to the occupation of the
single-particle ground state (condensate fraction) by
(3l2) _1+a (26)

N 2

where 3o = (4. + 4r)/V2 and 41 = (41 — 4r)/V/2. Clearly, with (mean-field)
Glauber coherent states one has always o = 1.

Semiclassical method
By using the semiclassical approach, we obtain the formula

a = (cos(0)) = %

where I,(x) is the n-th modified Bessel function of the first kind.

(27)

SL. Pitaevskii and S. Stringari, Phys. Rev. Lett. 87, 180402 (2001).



Coherence visibility: Exact vs semiclassical
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Coherence visibility « for ¢ = 0 as a function of kg T/JN, plotted for N = 20
(left panel) and N = 100 (right panel), and three values of U/JN: 0.1 (cyan

circles), 0.5 (green squares), 1 (orange triangles). The continuous lines are the
corresponding semiclassical result.



Coherence visibility: Exact vs semiclassical
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Coherence visibility « for ¢ = 0 as a function of U/JN, plotted for N = 20
and three values of kg T /JN: 0 (solid blue line), 0.2 (dashed-dotted green
line), 0.5 (dashed orange line).



Coherence visibility: Exact vs semiclassical

Introducing a small nonzero asymmetry energy ¢, the coherence visibility o at
U = 0 is significantly reduced both at zero and finite temperature T, while it
remains almost unaffected for |U|/JN > 0.

In the repulsive regime the visibility o becomes a non-monotonic function of
the interaction strength U at all temperatures (including T = 0), showing an
initial increase before decreasing asymptotically to zero.

In the attractive regime the visibility @ remains a monotonically decreasing
function of the modulus of the interaction strength.

In the repulsive cases (U > 0) the semiclassical approach works quite well.



Population imbalance: Exact vs semiclassical
The quantum population imbalance can be measured by

k=2 (40— (fim)) € -5, 1.

In the semiclassical approach, with Be = 1/(kg Terr), we have

€ ePetNe _ 1

e—ﬁeerz U(e/NU+1)? /4

(28)

k=—

U/JN = 0.05 |
™y ® ®)
U/JN = 0.5 T=0 e=0.1JN
2 N=10
= 0
- kgT/JN = 1.0
ksT/JN = 0.5
-4
kpT/JN = 0

4
2U - VmUBet erf, /1 B.N2U(s2; +1)] — erf[y/ 2 BN2U(555 — 1)]



Entanglement entropy: Exact without semiclassical

The entanglement between the two wells can be characterized® in terms of the
reduced density matrices p (r) = Trr(y) (7],

N
p Z pdlag (29)
n=0

where p, = e_E"/(kBT)/Z and

pdlag Z|C ||IN71><IN71| (30)
The entanglement entropy S = Sin[p.] = Swn[pr] is given by
N
Se == (al®) In((Jal*) € [0, In(N +1)] (31)
i=0

that is the von Neumann entropy S,y of the reduced density matrix j,, and
also of pg.

SM. Le Bellac, A Short Introduction to Quantum Information and Quantum Computation
(Cambridge Univ. Press, 2006).



Entanglement entropy: Exact without semiclassical
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Entanglement entropy Sg as a function of U/J, plotted for N = 20 and three
values of kg T /J: 0 (solid blue line), 10 (dashed-dotted green line), 20 (dashed
orange line). Upper panel: ¢/J = 0; lower panel: ¢/J = 3.



Conclusions

e We have characterized the thermal state of a bosonic Josephson junction
by means of complementary observables (coherence visibility, quantum
population imbalance, entanglement entropy), analyzing their
dependence on the system parameters, showing how interparticle
interaction, finite temperature, and on-site energy asymmetry affect their
properties.

e We have also presented a semiclassical description, where thermal
averages may be computed analytically (for U > 0) using a modified
Boltzmann weight involving an effective temperature.

e The semiclassical description may be applied

* to describe thermal properties of more complicated bosonic junctions
(dipolar interactions, multi-component);
* to investigate quantum dissipative systems.

e Our results are published in the paper:
C. Vianello, M. Ferraretto, and LS, Phys. Rev. A 111, 063310 (2025).
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