# Finite-temperature coherence and entanglement in asymmetric bosonic Josephson junctions

#### Luca Salasnich\*

in collaboration with M. Ferraretto and C. Vianello

\*Dipartimento di Fisica e Astronomia "Galileo Galilei", Università di Padova, INFN, Sezione di Padova, INO-CNR, Unita di Sesto Fiorentino (Firenze)

Classical and Quantum Complexity in Statistical Mechanics, Molveno (Trento), July 21, 2025

# Summary

- Two-site Bose-Hubbard model
- Semiclassical approximation
- Semiclassical approximation at finite temperature
- Exact diagonalization: Thermal equilibrium
- Coherence visibility: Exact vs semiclassical
- Population imbalance: Exact vs semiclassical
- Entanglement entropy: Exact without semiclassical

Conclusions

#### Two-site Bose-Hubbard model

A system of N interacting bosons confined by an asymmetric double-well potential can be described by the two-site Bose-Hubbard model

$$\hat{H}=-J(\hat{a}_L^\dagger\hat{a}_R+\hat{a}_R^\dagger\hat{a}_L)+rac{U}{2}[\hat{N}_L(\hat{N}_L-1)+\hat{N}_R(\hat{N}_R-1)]+rac{arepsilon}{2}(\hat{N}_L-\hat{N}_R) \quad (1)$$

with J > 0 the tunneling (hopping) energy, U the boson-boson interaction, and  $\varepsilon$  the on-site energy asymmetry.

The mean-field approximation is obtained by using Glauber coherent states

$$|\psi(t)\rangle = |\alpha_L(t)\rangle_L |\alpha_R(t)\rangle_R \tag{2}$$

where  $|\alpha_{j}\rangle$  is the eigenstate of the annihilation operator  $\hat{a}_{j}$ , with complex eigenvalue

$$\alpha_j(t) = \sqrt{N_j(t)} e^{i\theta_j(t)}$$
(3)

where  $N_j(t) = \langle \hat{N}_j \rangle$  is the average number of bosons in the site j = L, R and  $\theta_j(t)$  is the corresponding phase.

## Two site Bose-Hubbard model

One can also introduce<sup>1</sup> the relative phase

$$\theta(t) = \theta_R(t) - \theta_L(t) \tag{4}$$

and the normalized population imbalance

$$z(t) = \frac{N_L(t) - N_R(t)}{N} \qquad \in [-1, 1] .$$
 (5)

Here  $N = N_L(t) + N_R(t)$  is a constant of motion.

Quite remarkably, z(t) is canonically conjugate to  $\theta(t)$ . In particular, defining the canonical momentum

$$p_{\theta}(t) = \frac{\hbar N}{2} z(t) \tag{6}$$

we get

$$H = \langle \hat{H} \rangle = \frac{U}{\hbar^2} p_{\theta}^2 + \frac{\varepsilon}{\hbar} p_{\theta} - JN \sqrt{1 - \frac{4}{\hbar^2 N^2} p_{\theta}^2} \cos(\theta)$$
(7)

<sup>1</sup>A Smerzi, S Fantoni, S Giovanazzi, SR Shenoy Phys. Rev. Lett. **79**, 4950 (1997).

#### Semiclassical approximation

Under the assumption that the relative population imbalance is small  $(|z(t)|\ll 1)$  we get the **semiclassical** Josephson Hamiltonian<sup>2</sup>

$$H_{J} = \frac{U}{\hbar^{2}} p_{\theta}^{2} + \frac{\varepsilon}{\hbar} p_{\theta} - JN \cos(\theta) .$$
(8)

The semiclassical dynamics of  $H_J$  is given by the Hamilton equations

$$\dot{\theta} = \frac{\partial H_J}{\partial p_{\theta}} = \frac{2U}{\hbar^2} p_{\theta} + \frac{\varepsilon}{\hbar}$$
 (9)

$$\dot{p}_{\theta} = -\frac{\partial H_J}{\partial \theta} = -JN\sin(\theta)$$
 (10)

<sup>&</sup>lt;sup>2</sup>K. Furutani, J. Tempere, LS, Phys. Rev. B **105**, 134510 (2022).

#### Semiclassical approximation

In the case of small oscillations around z = 0 and  $\theta = 0$  from the corresponding linearized Hamilton equations

$$\dot{\theta} = \frac{\partial H_J}{\partial p_{\theta}} = \frac{2U}{\hbar^2} p_{\theta} + \frac{\varepsilon}{\hbar}$$
 (11)

$$\dot{p}_{\theta} = -\frac{\partial H_J}{\partial \theta} = -JN\,\theta$$
 (12)

one gets

$$\ddot{\theta}(t) + \omega_J^2 \theta(t) = 0 \tag{13}$$

with Josephson frequency

$$\omega_J = \frac{\sqrt{2UJN}}{\hbar} \tag{14}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○

of harmonic oscillation around the balanced configuration.

#### Semiclassical approximation at finite temperature

At low energies the **equilibrium distribution**  $f(p_{\theta}, \theta)$  of quantum-thermal states is essentially that of an harmonic oscillator with Josephson frequency  $\omega_J$ , provided that U > 0. This distribution

$$f(p_{\theta},\theta) = \frac{1}{\mathcal{Z}} e^{-H_J(p_{\theta},\theta)/(k_B T_{\rm eff})}$$
(15)

differs from the Maxwell-Boltzmann distribution by the fact that the temperature T of the bath is replaced by<sup>3</sup>

$$T_{\rm eff} = \frac{\hbar\omega_J}{2k_B} \coth\left(\frac{\hbar\omega_J}{2k_BT}\right) , \qquad (16)$$

where  $T_{\text{eff}} \rightarrow T$  for  $k_B T \gg \hbar \omega_J$  while  $T_{\text{eff}} \rightarrow \hbar \omega_J/2$  for  $k_B T \ll \hbar \omega_J$ . This provides us with a **semiclassical approximation** for the thermal averages of observables:

$$\langle \hat{O} \rangle = \frac{1}{\mathcal{Z}} \int_{-\hbar N/2}^{\hbar N/2} dp_{\theta} \int_{-\pi}^{\pi} d\theta \, O(p_{\theta}, \theta) \, e^{-H_{J}(p_{\theta}, \theta)/(k_{B}T_{\text{eff}})} \,. \tag{17}$$

<sup>3</sup>K. Furutani and LS, AAPPS Bull. **33**, 19 (2023).

#### Exact diagonalization: Thermal equilibrium

At fixed *N*, the diagonalization<sup>4</sup> of the  $(N + 1) \times (N + 1)$  matrix associated to the **full Hamiltonian**  $\hat{H}$  gives N + 1 eigenvalues  $E_n$  and N + 1 eigenstates  $|E_n\rangle$ . At thermal equilibrium with a bath of temperature *T* the density matrix reads

$$\hat{\rho} = \frac{1}{\mathcal{Z}} \sum_{n=0}^{N} e^{-E_n/(k_B T)} |E_n\rangle \langle E_n| = \sum_{i,j=0}^{N} \rho_{ij} |i\rangle_L |N-i\rangle_R \langle j|_L \langle N-j|_R$$
(18)

where  $|E_n\rangle = \sum_{i=0}^N c_i^{(n)} |i\rangle_L |N-i\rangle_R$  and

$$\rho_{ij} = \frac{1}{\mathcal{Z}} \sum_{n=0}^{N} e^{-E_n/(k_B T)} c_i^{(n)} (c_j^{(n)})^*$$
(19)

The diagonal elements  $\rho_{ii} = \langle |c_i|^2 \rangle = \sum_{n=0}^{N} |c_i^{(n)}|^2 e^{-E_n/(k_BT)}/\mathcal{Z}$  represent the average weights of the Fock states  $|i, N - i\rangle$  in the statistical ensemble. Thermal averages are computed as

$$\langle \hat{O} \rangle = \operatorname{Tr}[\hat{\rho} \, \hat{O}] = \sum_{i,j=0}^{N} \rho_{ij} \langle \, i, N - i \, | \, \hat{O} \, | \, j, N - j \, \rangle \tag{20}$$

<sup>4</sup>G. Mazzarella, LS, A. Parola, F. Toigo, Phys. Rev. A 83, 053607 (2011).

#### Exact diagonalization: Thermal equilibrium

The ground state of the problem

$$|E_0\rangle = \sum_{i=1}^{N} c_i^{(0)} |i\rangle_L |N - i\rangle_R$$
(21)

is such that (with N even and  $\varepsilon = 0$ )

$$|E_0
angle o |rac{N}{2}
angle_L|rac{N}{2}
angle_R$$
 (22)

for  $U/J \gg 1$ . This is the so-called **twin-Fock state**. Instead

$$|E_0
angle 
ightarrow rac{1}{\sqrt{2}} \left(|N
angle_L|0
angle_R + |0
angle_L|N
angle_R
ight)$$
 (23)

for  $U/J \ll -1$ . This is the so-called **NOON state** (Schrödinger cat). For U = 0 we have

$$|E_0\rangle = |ACS\rangle$$
 (24)

with  $|ACS\rangle$  the **atomic coherent state**, where the coefficient  $c_j^{(0)}$  are Gaussian distributed around i/N = 1/2. For  $N \to N$  we has  $|ACS\rangle \to |GCS\rangle$  that is the **Glauber coherent state**.

#### Exact diagonalization: Thermal equilibrium



**Thermal average**  $\rho_{ii} = \langle |c_i|^2 \rangle$  **of Fock weights** as a function of i/N, plotted for N = 50 and three values of U/J: 1 (solid orange line), 0 (dashed green line), -0.2 (dashed-dotted cyan line) at different temperatures T. Left:  $\varepsilon/J = 0$ ; right:  $\varepsilon/J = 0.2$ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

#### Coherence visibility: Exact vs semiclassical

The coherence of our system can be characterized in terms of the quantity

$$\alpha = \frac{2\langle \hat{a}_L^{\dagger} \hat{a}_R \rangle}{N} \tag{25}$$

called **coherence visibility**.<sup>5</sup> This is related to the occupation of the single-particle ground state (**condensate fraction**) by

$$\frac{\langle \hat{a}_{0}^{\dagger} \hat{a}_{0} \rangle}{N} = \frac{1+\alpha}{2}$$
(26)

where  $\hat{a}_0 = (\hat{a}_L + \hat{a}_R)/\sqrt{2}$  and  $\hat{a}_1 = (\hat{a}_L - \hat{a}_R)/\sqrt{2}$ . Clearly, with (mean-field) Glauber coherent states one has always  $\alpha = 1$ .

#### Semiclassical method

By using the semiclassical approach, we obtain the formula

$$\alpha = \langle \cos(\theta) \rangle = \frac{I_1(JN/(k_B T_{\text{eff}}))}{I_0(JN/(k_B T_{\text{eff}}))}$$
(27)

where  $I_n(x)$  is the *n*-th modified Bessel function of the first kind.

<sup>5</sup>L. Pitaevskii and S. Stringari, Phys. Rev. Lett. **87**, 180402 (2001).

### Coherence visibility: Exact vs semiclassical



**Coherence visibility**  $\alpha$  for  $\varepsilon = 0$  as a function of  $k_B T/JN$ , plotted for N = 20(left panel) and N = 100 (right panel), and three values of U/JN: 0.1 (cyan circles), 0.5 (green squares), 1 (orange triangles). The continuous lines are the corresponding semiclassical result. 

### Coherence visibility: Exact vs semiclassical



**Coherence visibility**  $\alpha$  for  $\varepsilon = 0$  as a function of U/JN, plotted for N = 20 and three values of  $k_B T/JN$ : 0 (solid blue line), 0.2 (dashed-dotted green line), 0.5 (dashed orange line).

Introducing a small nonzero **asymmetry energy**  $\varepsilon$ , the coherence visibility  $\alpha$  at U = 0 is significantly reduced both at zero and finite temperature T, while it remains almost unaffected for |U|/JN > 0.

In the repulsive regime the visibility  $\alpha$  becomes a non-monotonic function of the interaction strength U at all temperatures (including T = 0), showing an initial increase before decreasing asymptotically to zero.

In the attractive regime the visibility  $\alpha$  remains a monotonically decreasing function of the modulus of the interaction strength.

In the repulsive cases (U > 0) the **semiclassical approach** works quite well.

A D > A P > A E > A E > A D > A Q A

#### Population imbalance: Exact vs semiclassical

The quantum population imbalance can be measured by

$$k = \frac{1}{2} \left( \langle \hat{N}_L \rangle - \langle \hat{N}_R \rangle \right) \in \left[ -\frac{N}{2}, \frac{N}{2} \right].$$
(28)

In the semiclassical approach, with  $eta_{
m eff}=1/(k_B\, T_{
m eff})$ , we have

$$k = -\frac{\varepsilon}{2U} + \frac{e^{\beta_{\rm eff}N\varepsilon} - 1}{\sqrt{\pi U\beta_{\rm eff}}} \frac{e^{-\beta_{\rm eff}N^2U(\varepsilon/NU+1)^2/4}}{\operatorname{erf}[\sqrt{\frac{1}{4}\beta_{\rm eff}N^2U}(\frac{\varepsilon}{NU}+1)] - \operatorname{erf}[\sqrt{\frac{1}{4}\beta_{\rm eff}N^2U}(\frac{\varepsilon}{NU}-1)]}$$



#### Entanglement entropy: Exact without semiclassical

The **entanglement** between the two wells can be characterized<sup>6</sup> in terms of the reduced density matrices  $\hat{\rho}_{L(R)} = \text{Tr}_{R(L)}[\hat{\rho}]$ ,

$$\hat{\rho}_L = \hat{\rho}_R = \sum_{n=0}^{N} \rho_n \, \hat{\rho}_{\text{diag}}^{(n)} \tag{29}$$

ション ふゆ アメリア メリア しょうくしゃ

where  $\rho_n = e^{-E_n/(k_BT)}/\mathcal{Z}$  and

$$\hat{\rho}_{\text{diag}}^{(n)} = \sum_{i=0}^{N} |c_i^{(n)}|^2 |i, N-i\rangle \langle i, N-i|.$$
(30)

The entanglement entropy  $S_E = S_{vN}[\hat{\rho}_L] = S_{vN}[\hat{\rho}_R]$  is given by

$$S_E = -\sum_{i=0}^{N} \langle |c_i|^2 \rangle \ln \left( \langle |c_i|^2 \rangle \right) \qquad \in [0, \ln(N+1)] \tag{31}$$

that is the von Neumann entropy  $S_{vN}$  of the reduced density matrix  $\hat{\rho}_L$ , and also of  $\hat{\rho}_R$ .

 $<sup>^{6}\</sup>text{M}.$  Le Bellac, A Short Introduction to Quantum Information and Quantum Computation (Cambridge Univ. Press, 2006).

# Entanglement entropy: Exact without semiclassical



**Entanglement entropy**  $S_E$  as a function of U/J, plotted for N = 20 and three values of  $k_B T/J$ : 0 (solid blue line), 10 (dashed-dotted green line), 20 (dashed orange line). Upper panel:  $\varepsilon/J = 0$ ; lower panel:  $\varepsilon/J = 3$ .

### Conclusions

- We have characterized the thermal state of a bosonic Josephson junction by means of complementary observables (coherence visibility, quantum population imbalance, entanglement entropy), analyzing their dependence on the system parameters, showing how interparticle interaction, finite temperature, and on-site energy asymmetry affect their properties.
- We have also presented a **semiclassical description**, where thermal averages may be computed analytically (for U > 0) using a modified Boltzmann weight involving an effective temperature.
- The semiclassical description may be applied
  - \* to describe thermal properties of more complicated bosonic junctions (dipolar interactions, multi-component);

- \* to investigate quantum dissipative systems.
- Our results are published in the paper:
  - C. Vianello, M. Ferraretto, and LS, Phys. Rev. A 111, 063310 (2025).

Thank you for your attention!

・ロト・4回ト・4回ト・4回ト・回りの(の)