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Two-site Bose-Hubbard model

A system of N interacting bosons confined by an asymmetric double-well
potential can be described by the two-site Bose-Hubbard model

Ĥ = −J(â†LâR + â†R âL) +
U

2
[N̂L(N̂L − 1) + N̂R(N̂R − 1)] +

ε

2
(N̂L − N̂R) (1)

with J > 0 the tunneling (hopping) energy, U the boson-boson interaction, and
ε the on-site energy asymmetry.

The mean-field approximation is obtained by using Glauber coherent states

|ψ(t)⟩ = |αL(t)⟩L|αR(t)⟩R (2)

where |αj⟩ is the eigenstate of the annihilation operator âj , with complex
eigenvalue

αj(t) =
√

Nj(t) e
iθj (t) (3)

where Nj(t) = ⟨N̂j⟩ is the average number of bosons in the site j = L,R and
θj(t) is the corresponding phase.



Two site Bose-Hubbard model

One can also introduce1 the relative phase

θ(t) = θR(t)− θL(t) (4)

and the normalized population imbalance

z(t) =
NL(t)− NR(t)

N
∈ [−1, 1] . (5)

Here N = NL(t) + NR(t) is a constant of motion.
Quite remarkably, z(t) is canonically conjugate to θ(t). In particular, defining
the canonical momentum

pθ(t) =
ℏN
2

z(t) (6)

we get

H = ⟨Ĥ⟩ = U

ℏ2
p2
θ +

ε

ℏ
pθ − JN

√
1− 4

ℏ2N2
p2
θ cos(θ) (7)

1A Smerzi, S Fantoni, S Giovanazzi, SR Shenoy Phys. Rev. Lett. 79, 4950 (1997).



Semiclassical approximation

Under the assumption that the relative population imbalance is small
(|z(t)| ≪ 1) we get the semiclassical Josephson Hamiltonian2

HJ =
U

ℏ2
p2
θ +

ε

ℏ
pθ − JN cos(θ) . (8)

The semiclassical dynamics of HJ is given by the Hamilton equations

θ̇ =
∂HJ

∂pθ
=

2U

ℏ2
pθ +

ε

ℏ
(9)

ṗθ = −∂HJ

∂θ
= −JN sin(θ) (10)

2K. Furutani, J. Tempere, LS, Phys. Rev. B 105, 134510 (2022).



Semiclassical approximation

In the case of small oscillations around z = 0 and θ = 0 from the corresponding
linearized Hamilton equations

θ̇ =
∂HJ

∂pθ
=

2U

ℏ2
pθ +

ε

ℏ
(11)

ṗθ = −∂HJ

∂θ
= −JN θ (12)

one gets
θ̈(t) + ω2

J θ(t) = 0 (13)

with Josephson frequency

ωJ =

√
2UJN

ℏ
(14)

of harmonic oscillation around the balanced configuration.



Semiclassical approximation at finite temperature

At low energies the equilibrium distribution f (pθ, θ) of quantum-thermal
states is essentially that of an harmonic oscillator with Josephson frequency ωJ ,
provided that U > 0. This distribution

f (pθ, θ) =
1

Z e−HJ (pθ,θ)/(kBTeff ) (15)

differs from the Maxwell-Boltzmann distribution by the fact that the
temperature T of the bath is replaced by3

Teff =
ℏωJ

2kB
coth

(
ℏωJ

2kBT

)
, (16)

where Teff → T for kBT ≫ ℏωJ while Teff → ℏωJ/2 for kBT ≪ ℏωJ .
This provides us with a semiclassical approximation for the thermal averages
of observables:

⟨Ô⟩ = 1

Z

∫ ℏN/2

−ℏN/2

dpθ

∫ π

−π

dθO(pθ, θ) e
−HJ (pθ,θ)/(kBTeff ) . (17)

3K. Furutani and LS, AAPPS Bull. 33, 19 (2023).



Exact diagonalization: Thermal equilibrium

At fixed N, the diagonalization4 of the (N + 1)× (N + 1) matrix associated to
the full Hamiltonian Ĥ gives N + 1 eigenvalues En and N + 1 eigenstates |En⟩.
At thermal equilibrium with a bath of temperature T the density matrix reads

ρ̂ =
1

Z

N∑
n=0

e−En/(kBT )|En ⟩⟨En | =
N∑

i,j=0

ρij |i⟩L|N − i⟩R⟨j |L⟨N − j |R (18)

where |En ⟩ =
∑N

i=0 c
(n)
i |i⟩L|N − i⟩R and

ρij =
1

Z

N∑
n=0

e−En/(kBT )c
(n)
i (c

(n)
j )∗ (19)

The diagonal elements ρii = ⟨|ci |2⟩ =
∑N

n=0 |c
(n)
i |2e−En/(kBT )/Z represent the

average weights of the Fock states | i ,N − i ⟩ in the statistical ensemble.
Thermal averages are computed as

⟨Ô⟩ = Tr[ρ̂ Ô] =
N∑

i,j=0

ρij⟨ i ,N − i | Ô | j ,N − j ⟩ (20)

4G. Mazzarella, LS, A. Parola, F. Toigo, Phys. Rev. A 83, 053607 (2011).



Exact diagonalization: Thermal equilibrium

The ground state of the problem

|E0⟩ =
N∑
i=1

c
(0)
i |i⟩L|N − i⟩R (21)

is such that (with N even and ε = 0)

|E0⟩ → |N
2
⟩L|

N

2
⟩R (22)

for U/J ≫ 1. This is the so-called twin-Fock state. Instead

|E0⟩ →
1√
2
(|N⟩L|0⟩R + |0⟩L|N⟩R) (23)

for U/J ≪ −1. This is the so-called NOON state (Schrödinger cat).
For U = 0 we have

|E0⟩ = |ACS⟩ (24)

with |ACS⟩ the atomic coherent state, where the coefficient c
(0)
j are Gaussian

distributed around i/N = 1/2. For N → N we has |ACS⟩ → |GCS⟩ that is the
Glauber coherent state.



Exact diagonalization: Thermal equilibrium
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Thermal average ρii = ⟨|ci |2⟩ of Fock weights as a function of i/N , plotted
for N = 50 and three values of U/J: 1 (solid orange line), 0 (dashed green
line), −0.2 (dashed-dotted cyan line) at different temperatures T . Left:
ε/J = 0; right: ε/J = 0.2.



Coherence visibility: Exact vs semiclassical

The coherence of our system can be characterized in terms of the quantity

α =
2⟨â†LâR⟩

N
(25)

called coherence visibility.5 This is related to the occupation of the
single-particle ground state (condensate fraction) by

⟨â†0 â0⟩
N

=
1 + α

2
(26)

where â0 = (âL + âR)/
√
2 and â1 = (âL − âR)/

√
2. Clearly, with (mean-field)

Glauber coherent states one has always α = 1.

Semiclassical method
By using the semiclassical approach, we obtain the formula

α = ⟨cos(θ)⟩ = I1(JN/(kBTeff))

I0(JN/(kBTeff))
(27)

where In(x) is the n-th modified Bessel function of the first kind.

5L. Pitaevskii and S. Stringari, Phys. Rev. Lett. 87, 180402 (2001).



Coherence visibility: Exact vs semiclassical
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Coherence visibility α for ε = 0 as a function of kBT/JN, plotted for N = 20
(left panel) and N = 100 (right panel), and three values of U/JN: 0.1 (cyan
circles), 0.5 (green squares), 1 (orange triangles). The continuous lines are the
corresponding semiclassical result.



Coherence visibility: Exact vs semiclassical
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Coherence visibility α for ε = 0 as a function of U/JN, plotted for N = 20
and three values of kBT/JN: 0 (solid blue line), 0.2 (dashed-dotted green
line), 0.5 (dashed orange line).



Coherence visibility: Exact vs semiclassical

Introducing a small nonzero asymmetry energy ε, the coherence visibility α at
U = 0 is significantly reduced both at zero and finite temperature T , while it
remains almost unaffected for |U|/JN > 0.

In the repulsive regime the visibility α becomes a non-monotonic function of
the interaction strength U at all temperatures (including T = 0), showing an
initial increase before decreasing asymptotically to zero.

In the attractive regime the visibility α remains a monotonically decreasing
function of the modulus of the interaction strength.

In the repulsive cases (U > 0) the semiclassical approach works quite well.



Population imbalance: Exact vs semiclassical
The quantum population imbalance can be measured by

k =
1

2

(
⟨N̂L⟩ − ⟨N̂R⟩

)
∈ [−N

2
,
N

2
] . (28)

In the semiclassical approach, with βeff = 1/(kBTeff), we have

k = − ε

2U
+

eβeffNε − 1√
πUβeff

e−βeffN
2U(ε/NU+1)2/4

erf[
√

1
4
βeffN2U( ε

NU
+ 1)]− erf[

√
1
4
βeffN2U( ε

NU
− 1)]
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Entanglement entropy: Exact without semiclassical

The entanglement between the two wells can be characterized6 in terms of the
reduced density matrices ρ̂L(R) = TrR(L)[ρ̂],

ρ̂L = ρ̂R =
N∑

n=0

ρn ρ̂
(n)
diag (29)

where ρn = e−En/(kBT )/Z and

ρ̂
(n)
diag =

N∑
i=0

|c (n)i |2| i ,N − i ⟩⟨ i ,N − i |. (30)

The entanglement entropy SE = SvN[ρ̂L] = SvN [ρ̂R ] is given by

SE = −
N∑
i=0

⟨|ci |2⟩ ln (⟨|ci |2⟩) ∈ [0, ln(N + 1)] (31)

that is the von Neumann entropy SvN of the reduced density matrix ρ̂L, and
also of ρ̂R .

6M. Le Bellac, A Short Introduction to Quantum Information and Quantum Computation
(Cambridge Univ. Press, 2006).



Entanglement entropy: Exact without semiclassical
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Entanglement entropy SE as a function of U/J, plotted for N = 20 and three
values of kBT/J: 0 (solid blue line), 10 (dashed-dotted green line), 20 (dashed
orange line). Upper panel: ε/J = 0; lower panel: ε/J = 3.



Conclusions

• We have characterized the thermal state of a bosonic Josephson junction
by means of complementary observables (coherence visibility, quantum
population imbalance, entanglement entropy), analyzing their
dependence on the system parameters, showing how interparticle
interaction, finite temperature, and on-site energy asymmetry affect their
properties.

• We have also presented a semiclassical description, where thermal
averages may be computed analytically (for U > 0) using a modified
Boltzmann weight involving an effective temperature.

• The semiclassical description may be applied

∗ to describe thermal properties of more complicated bosonic junctions
(dipolar interactions, multi-component);

∗ to investigate quantum dissipative systems.

• Our results are published in the paper:
C. Vianello, M. Ferraretto, and LS, Phys. Rev. A 111, 063310 (2025).
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