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Building blocks of matter: bosons and fermions

From experiments one finds that each elementary particle has an intrinsic
angular momentum, that is called spin S.

All particles can be divided into two groups:
— bosons, with spin S that is an integer multiplier of the Planck constant h:

S=nh, n=0,1,2,...,
— fermions, with spin S that is a semi-integer multiplier of h:
S="h, n=1,23,...
2
The reduced Planck constant reads

h
h=_— =1.054 x 10734 Joule/second .

2T



The spin of a generic atom
A
7 X
is the sum of the spins of its particles:
A nucleons (protons and neutrons) in the atomic nucleus and Z electrons.

Because both nucleons and electrons are fermions, the neutral atom fgx IS a
boson if the numer A+ Z is even, while it is a fermion if A+ Z is odd.

Examples: helium 4, i.e. ‘Q‘He, IS @ boson, while helium 3, i.e. %He, iIs fermion.

The most intresting experimental result is that
bosons and fermions have a very different behavior!!



Bosons and fermions: very different behavior

— Identical bosons can occupy the same state, i.e. they can stay very close
each other; if all bosons are in the same state then there is the so-called
Bose-Einstein condensation.

— Identical fermions CANNOT occupy the same state, i.e. they must stay far
from each other: Pauli’'s exclusion principle.

Bosons and fermions in a harmonic trap.



Quantum statistical mechanics investigates the behavior of bosons and
fermions as a function of temperature T'. If the single-particle energy is given

by
2

B(r,p) = +U(). (1)
than ideal bosons follow the Bose-Einstein distribution
f(r,p) = - (2)
rsp)— exp(E(Z’;’%_“) 4 ;
while ideal fermions follow the Fermi-Dirac distribution
frp) = exp (PR + 1 )
where kg is the Boltzmann constant. The total number of particles is
V= [ TP (4)

and this condition fixes the chemical potential u.



Aacroscopic quantum phenomena at ultra-low temperatures

When the temperature T is high, the statistical distributions of bosons and
fermions reduce to the same distribution: the Maxwell-Boltzmann distribution
7

—E(I‘,p)
r, = exp(——) exX , 5
f(r,p) p(kBT) p ( AT ) (5)
and consequently the statistical effect of spin is not important (classical
statistical mechanics).

To see the statistical effects of spin and the differences between bosons
and fermions (quantum degeneracy) it is necessary to strongly reduce the
temperaturel!!



For N ideal particles in a box of volume V, the critical temperature of quan-
tum degeneracy can be estimated by equating the de Broglie wave length

h h

A=—= y (6)
[BkRT
mov m 77]_2
of a particle in the gas at temperature T to the inter-atomic distance
1
d= —~= 7
73 (7)
where n = N/V is the number density. In this way one finds
h2 N 2/3
T, ~ ( ) | (8)
mKB V

Below this critical temperature 7T, the matter has a strange behavior: it can
become supermatter, where macroscopic quantum phenomena can OcCcur.

The inter-particle interaction modifies T, and can also transform fermions
in bosons (BCS theory and BCS-BEC crossover).



Superconductivity

In 1911 Heike Kamerlingh Onnes observed that in the mercury (Hg) cooled
below T, = 4.16 Kelvin the electrical resistence becomes zero.

Onnes called this phenomenon superconductivity.
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Electrical resistence as a function of temperature for a superconducting material.



Many materials are superconductors below a critical temperature 7,.. But
others are not.

Material | Symbol | T, (Kelvin)
Aluminium | £ZAl 1.19
Tin £5°Sn 3.72
Mercury 20°Hg 4.16
Lead 25°Pb 7.20
Neodymium | 234Nb 9.30

Critical temperature T, of some superconducting materials, at atmospheric pressure.

In 1986 Karl Alex Muller and Johannes Georg Bednorz descovered high-
temperature superconductors.

These are cuprates, namely ceramic materials containing copper oxide. Their
critical temperature can reach 133 Kelvin.



Superconducting materials have many interesting properties. For instance
the expulsion of the magnetic field (Meissner effect).

Levitation of a magnetic material above the superconductor.

Technological applications of superconductors:

— MAGLEYV trains, based on magnetic levitation (mag-lev);

— SQUIDS, which are able to measure very weak magnetic fields;

— high magnetic fields for Nuclear Magnetic Resonance (NMR) machines.



Superfluidity

In 1937 Pyotr Leonidovich Kapitza descovered that below T, = 2.16 Kelvin
helium 4 (#He) remains liquid but it shows zero viscosity.

Kapitza called this phenomenon superfluidity.

Example: a macroscopic object immersed in superfluid helium moves without
viscosity if its velocity v & below a critical value wve.

In 1938 Fritz London gave a theoretical explanation of superfluidity of helium
4 on the basis of Bose-Einstein condensation.

London observed that 4He is a boson and that the critical temperature T, of
Bose-Einstein condensation for an ideal Bose gas is in good agreement with
the T, of helium 4.



London introduced the idea of a “macroscopic wave function” ¥(r,t), such
that

n(r,t) = [¢(r, )|
gives the density of atoms in r at time ¢, and
N = /n(r,t) d3r = /|¢(r,t)|2 d3r

IS the total number of atoms in the Bose-Einstein condensate.

In fact, all particles of the Bose-Einstein condensate are in the same quantum
state; thus they are all characterized by the same quantum wave function

P(r, ).

In 1950 Lev Landau and Vitaly Ginzburg proposed the idea of an “order pa-
rameter” or “macroscopic wave function” ¥(r,t) also for the superconductivity.

But the electrons, which transport the electric current, are fermions.

How can one explain the presence of Bose-Einstein condensation with elec-
trons?



In 1957 John Bardeen, Leon Cooper and Robert Schrieffer (BCS theory)
suggested that in superconductivity, due to the ionic cristal lattice, pairs of
electrons with anti-parallel spins can couple (Cooper pairs), and each pair
behaves like a bosonic particle.

BCS theory is based on Bose-Einstein condensation of Cooper pairs.

Condensate fraction fp: fraction of particles which are in the same quantum
state.

In liguid Helim 4 at zero temperature: fo~ 10%.
In solid superconductors at zero temperature: fg ~ 0.01%.

In ultra-dilute atomic gases at zero temperature: fo ~ 99%.



Bose-Einstein condensation in ultra-cold atoms

In 1995 Eric Cornell, Carl Wieman and Wolfgang Ketterle achieved the Bose-
Einstein condensation with ultra-dilute and ultra-cold atomic vapors (87Rb
and 23Na).

The critical temperature is about 7, ~ 100 nanoKelvin.

Density profiles of the atomic gas of Rubidium.



In these experiments ultracold atoms are confined in a harmonic trap

V() = Sm?(@? + % + =) (9)

produced by magnetic (magnetic-dipole-moment interaction) or electric fields
(electric-dipole-moment interaction).

The critical temperature of Bose-Einstein condensation for an ideal Bose gas
INn @ harmonic trap is

kT, ~ hw N1/3 (10)

and the condensate fraction reads

fo=1- (%)3 . (11)



Bose-Einstein condensates are the atomic analog of the LASER: coherent
matter waves.

A laser is characterized by a beam which is collimated, monochromatic and
coherent.

Esperiments to achieve an atomic laser with Bose-Einstein condensates.



An interesting consequence of Bose-Einstein condensation in ultra-cold atoms
and helium 4 is the possibility of obtaining quantized vortices, where the
fluid velocity follows the law

hok
v = k=0,1,2,...
mr |

Formation of quantized vortices in Bose-condensed gas of 8"Rb atoms. The number of

vortices increases by increasing the rotational frequency of the system.



Gross-Pitaevskii equation

Bose-Einstein condensates made of ultra-cold and dilute alkali-metal atoms
can be described by the following nonlinear Schrodinger equation

2
hop(e,t) = |~ V2 UG 8) + gl D | w(r,0)
t 2m

with

Y (r,t) the macroscopic wave function of the condensed atoms of mass m,
U(r,t) the external confining potential

g a strength related to the inter-atomic interaction.

T his equation is called Gross-Pitaevskii equation. It describes quite accuratele
the properties of pure Bose condensates, i.e. with a condensate fraction equal
to 1 (quasi-zero temperature).



Derivation of the Gross-Pitaevskii equation

The N-body stationary Schrodinger equation

H®d(rq,...,ry) =€ ®(r1,...,TN) , (12)
where
N
-y [ M ruen| + Y v (13)
: 7/<J

is the N-body Hamiltonian, can be obtained by minimizing the energy func-
tional

E[®] = /q>*(r1,...,rN)ﬁq>(r1,...,rN) d3rq..d3ry (14)

with the constraint

/|<l>(r1, ...,rN)|2 d3rq..d3ry =1 (15)



In the case of a Bose-Einstein condensate (BEC), all identical bosons are in
the same single-particle quantum state ¥(r). It is quite natural to write the
N-body wave function of a BEC as

P(ry,....,tn) = 9(ry) - 9(r2) - ... -p(ry_1) - P(ry) . (16)

By inserting this wave function in the energy functional, it becomes

* hz 2 3
Byl = N [¢ <r>[ L v +U<r>] w(r) d3r (17)

+ SNV - 1) [OPBE)PY ) dr a (18)

In the case of a dilute BEC, the inter-atomic interaction can be taken as a
contact interaction:

Vir,/) =G 6(r -1, (19)
where
4rh2as
G — mh<a (20)
m

is the inter-atomic strength with as the s-wave scattering length fixed by
experiments.



Many experiments have been devoted to the study of dilute and ultra-cold
Bose-Einstein condensates (BECs) with positive s-wave scattering length

as > 0, (21)

which implies an effective repulsion between atoms (87Rb, 23Na). There are
instead few experiments with negative s-wave scattering length

as < O 9 (22)

which implies an effective attraction between atoms.

’Li atoms have a negative scattering length

as~ —14.10"19m. (23)
BECs with “Li atoms have been studied at Rice Univ.* and ENST.

Recently an attractive BEC with 8°Rb atoms has been investigated at JILAY
by using a Feshbach resonance.

*K.E. Strecker et al., Nature 417, 150 (2002).
fL. Khaykovich et al., Science 296, 1290 (2002).
IS.L. Cornish et al., PRL 96, 170401 (2006).



By using the Fermi pseudo-potential, the energy functional of the BEC is
further simplified and reads

h2 1
Bly) = N [ *(x) [—%VQ +U@) + JGN(V - 1>|¢<r>|2] () . (24)
By minimizing this single-particle energy functional with the constraint

[1w@)? dr =1 (25)

one obtains the so-called Gross-Pitaevskii equation

2m

where p is the Lagrange multiplier fixed by the normalization. Usually one
sets N instead of N — 1 for a large number of particles. Note that u satisfies
the equation

2
[ g2 +U(r) + G(N — 1)|¢(1‘)|2} P(r) = p P(r), (26)

OF
- . 27
b=y (27)

Thus, p is the chemical potential of the system.



Gaussian variational approach

The stationary properties of a dilute Bose-Einstein condensates (BEC) are
well described by the Gross-Pitaevskii equation (GPE), given by

47rh2a3N

2
[ P92 4 U + B()2] $(@) = u () (28)

where ¥ (r) is the macroscopic wave function of the BEC, here normalized to
one, i.e.

/|¢(r)|2 Br=1. (29)

In the GPE u is the chemical potential, U(r) is the external trapping potential,
as 1S the s-wave scattering length and N is the number of condensed atomic
bosons.

The GPE can be obtained by minimizing the following energy functional

27Th asN

= | { V)2 + U@ )2 +

with the constraint of Eq. (29).

lw(r>|4} (30)



Let us suppose that the external trap is a spherically-symmetric harmonic
potential

1 1

U(r) = Eme< + 42+ 2 ) = Emw%{'rQ : (31)

A reasonable variational ansatz for i (r) is a Gaussian wave function

1 2
p(r) = exp ( ) , (32)
7w3/463/%53/2 2a%;02
where
h
af = \[—— (33)
mw g

IS the characteristic harmonic length and o is the variational parameter, that
is the scaled width of the BEC.

By inserting this trial wave function in the GPE energy functional and inte-
grating over spatial coordinates one finds the effective energy

_ 2F 31 1
E=""=2"+4 02+r—, (34)
th 20‘
which is a function of the variational parameter o, with I = \/gM the

. . afg
Interaction strength.



The best choice of o is obtained by minimizing the energy E(o), i.e.

OFE 1 3 1
O=—=-3—5+4+30>—-3—. 35
oo o3 T30 o4 (35)
Obviously o must also satisfy the condition
O2E
—— > 0. 36
502 (36)
It follows that
o>1 for >0,
while
ce<o<1l for —-T.<l<O0,
with oo = 1/51/4 ~ 0.67 and . = 4/5%/4 ~ 0.53.
Thus, for as < O it exist a critical strength
las|N \/ﬁ 4
= ,/—— ~ 0.67 37
apg 255/4 (37)

above which the local minumum of the energy does not exist anymore. Above
this critical strength there is the so-called collapse of the condensate. For
Li atoms of Rice Univ. experiment: N, ~ 1300.
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Attractive BEC under anisotropic harmonic confinement

Let us now consider an attractive BEC (as < 0) with an anisotropic but
axially-symmetric harmonic trapping potential

1 1
U(r) = Zmwd (2? +y%) + Jmwz?, (38)

By using the transverse harmonic length

h
ap = \|—, (39)
mw |

as unit of length, and Aw | as unit of energy, the scaled GPE energy functional
reads

E—/ Lvp@ P+ |22 + 2>+E 21 [p(@)|? 4 2my]y(r)|* p dPr,  (40)
— /2 v T 2 ° it ’

with
Wz .
A= — trap anisotropy
W
. |CL3|N : :
v= interaction strength.

a|



To study this problem we use the Gaussian ansatz’
1 (z° +y°) 2°
v(0) =375 exp{— N
w2/ %on 20 2n
where o and n are, respectively, transverse and axial widths. Inserting this
ansatz into the energy functional, we obtain the effective energy

(41)

A2 2 1
E——‘|‘0 +—+—"72 \/7’)’7- (42)
T 04T
We look for values of ¢ and n that minimize energy E and get
2 1

——+0+\/7 Tzoa (43)

T  0°n

> 1
X242 gy =0, (44)

77 T (7 77

These equations give local minima only if the curvature of E(n, o) is positive.

Remarkably, there is a local minumum also with A = 0, i.e. also without
axial confinement: this is the so-called bright soliton. This bright soliton
collapses at a critical strength ~. ~ 0.78.

§__.S., A. Parola, and L. Reatto, PRA 66, 043603 (2002).



We can also study the dynamics of the attractive BEC by using the La-
grangian’

. 1. _
L=¢5°+ 5772 — E(o,n) . (45)
The equations of motion are
. 1 2 1
0——3+0+\/i’YT=Oa (46)
o ™ o°n
. 1 2 1
77——3+)\277+\/i’)’ﬁ=0- (47)
n w™ o7

From these equations one can quite easily derive the frequencies €27 and <2,
of small oscillations around the local minima.

(21 and €2, are the frequencies of breathing modes along radial and axial
direction.

IL.S., Int. J. Mod. Phys. B 14 405 (2000).
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Gaussian variational approach to the attractive BEC. Top: Widths ¢ and n. Bottom:
Breathing frequencies wi and ws. All vs interaction strength . Trap anisotropy:. black solid
line (A = 0); red dotted line (A = 0.01); green dashed line (A = 0.1).



Conclusions

Macroscopic quantum phenomena at ultra-low temperature are strongly
related to Bose-Einstein condensation.

A Bose-Einstein condensate (BEC) made of ultra-dilute and ultra-cold
atomic gases can be accurately studied by using the Gross-Pitaevskii equa-
tion (GPE).

The Gaussian variational approach is useful to study the GPE.

BECs with negative scattering length show interesting properties:
— collapse above a critical strength;
— bright soliton solutions.



