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Unitary Fermi gas (I)

Let us consider a gas of atomic fermions with two equally-populated
spin components: n↑ = n↓. The system is dilute if the effective range re
of the inter-atomic potential is much smaller than the average
interparticle separation d = n−1/3 with total number density n = n↑ + n↓,
namely

re � d . (1)

The system is strongly-interacting if the scattering length a of the
inter-atomic potential greatly exceeds the average interparticle separation
d = n−1/3, i.e.

d � |a| . (2)

The unitarity regime1 is characterized by both these conditions:

re � d � |a| . (3)

Under these conditions the dilute but strongly-interacting Fermi gas is
called unitary Fermi gas.

1S. Giorgini, L.P. Pitaevskii, and S. Stringari, Rev. Mod. Phys. 80, 1215 (2008).



Unitary Fermi gas (II)

Ideally, the unitarity limit corresponds to

re = 0 and a = ±∞ . (4)

In a uniform configuration and at zero temperature, the only length
characterizing the Fermi gas in the unitarity limit is the average
interparticle distance d = n−1/3.
In this case the ground-state energy must be2

E0 = ξ
3

5

~2

2m
(3π2)2/3n2/3N = ξ

3

5
εFN (5)

with εF = ~2

2m (3π2)2/3n2/3 Fermi energy of the ideal gas and ξ a universal
unknown parameter (Bertsch parameter).
Monte Carlo calculations and experimental data with dilute and ultracold
atoms suggest that, at zero temperature, the unitary Fermi gas is a
superfuid with ξ ' 0.4.

2W. Zwerger (Ed.), The BCS-BEC Crossover and the Unitary Fermi Gas (Springer,
2011).



Single-particle and collective excitations (I)

Inspired by the Landau theory of elementary excitations we model the
many-body quantum Hamiltonian Ĥ of the uniform unitary Fermi gas
with the simple effective Hamiltonian

Ĥ = E0 +
∑
σ=↑,↓

∑
k

εsp(k) ĉ†kσ ĉkσ +
∑
q

εcol(q) b̂†qb̂q , (6)

where
the ĉ†kσ (ĉkσ) operator creates (annihilates) a single-particle excitation,
respectively, with linear momentum k, spin σ, and energy εsp(k),
whereas
the b̂†q (b̂q) operator creates (annihilates) a bosonic collective excitation,
respectively, of linear momentum q and energy εcol(q).



Single-particle and collective excitations (II)

The dispersion of the BCS-like single-particle elementary excitations can
be written as

εsp(k) =

√(
~2k2

2m
− ζεF

)2

+ ∆2
0 (7)

where ζ is a parameter taking into account the interaction between
fermions and the reconstruction of the Fermi surface close to the critical
temperature. In particular, ζ = 0.9 according3 to accurate Monte Carlo
results. Moreover, ∆0 is the gap parameter, with 2∆0 the minimal
energy to break a Cooper pair. The gap energy ∆0 of the unitary Fermi
gas at zero-temperature has been calculated with Monte Carlo
simulations4 and found to be

∆0 = γεF (8)

with γ = 0.45.

3P. Magierski, G. Wlazlowski, A. Bulgac, and J. E. Drut, Phys. Rev. Lett. 103,
210403 (2009).

4J. Carlson and S. Reddy, Phys. Rev. Lett. 95, 060401 (2005).



Single-particle and collective excitations (III)

The dispersion relation of collective elementary excitations is assumed5 to
be given by

εcol(q) =

√
~2q2

2m

(
2mc2

B + λ
~2q2

2m

)
, (9)

where cB =
√
ξ/3 vF is the Bogoliubov sound velocity with

vF =
√

2εF/m the Fermi velocity of a non-interacting Fermi gas.
In a old paper [LS, Phys. Rev. A 82, 063619 (2010)] we used the value
λ = 0.25, which is consistent with a macroscopic time-dependent
nonlinear Schrödinger equation approach without the inclusion of
spurious terms.6

In a recent paper [G. Bighin, A. Cappellaro, and LS, Phys. Rev. A 105,
063329 (2022)] we have used instead λ = 0.08, which is the value
obtained7 from the beyond-mean-field GPF theory8 at unitarity.

5LS, Phys. Rev. A 82, 063619 (2010).
6LS and F. Toigo, Phys. Rev. A 78, 053626 (2010).
7G. Bighin, LS, P. A. Marchetti, and F. Toigo, Phys. Rev. A 92, 023638 (2015).
8J. Tempere and J. P. Devreese, Superconductors: Materials, Properties and

Applications, InTech 383 (2012).



Universal thermodynamics (I)

The Helmholtz free energy F of the system is given by the usual formula
F = −kBT lnZ, where we introduced the partition function Z of the
system, defined as

Z = Tr[e−Ĥ/kBT ] . (10)

Similarly to Eq. (6), the free energy of the unitary Fermi gas can be
written as F = F0 + Fsp + Fcol, where F0 is the free energy of the
ground-state,

Fsp = −2kBT
∑
k

ln[1 + e−εsp(k)/(kBT )] (11)

is the free energy of fermionic single-particle excitations and finally

Fcol = −kBT
∑
q

ln[1− e−εcol(q)/(kBT )] (12)

is the free energy of the bosonic collective excitations.



Universal thermodynamics (II)

The total Helmholtz free energy F of a unitary Fermi gas in the
superfluid phase can be then written9 as

F = NεFΦ(x) , (13)

where, due to the scale-invariance of the system, Φ(x) is a function of
the scaled temperature x ≡ T/TF only, having defined the Fermi
temperature TF = εF/kB . Explicitly, Φ(x) takes the following form

Φ(x) =
3

5
ξ − 3x

∫ +∞

0

ln
[
1 + e−ε̃sp(u)/x

]
u2du

+
3

2
x

∫ +∞

0

ln
[
1− e−ε̃col(u)/x

]
u2du . (14)

Note that the discrete summations have been replaced by integrals, and
that we set ε̃col(u) =

√
u2(4ξ/3 + λu2) and ε̃sp(u) =

√
(u2 − ζ)2 + γ2.

9LS, Phys. Rev. A 82, 063619 (2010).



Universal thermodynamics (III)

We now aim at calculating the thermodynamics of the system in terms of
the universal function Φ(x) and its derivatives. From the Helmholtz free
energy F we can immediately obtain the chemical potential µ, that is
defined as

µ =

(
∂F

∂N

)
T ,V

= εF

[5

3
Φ

(
T

TF

)
− 2

3

T

TF
Φ′
(

T

TF

)]
, (15)

where Φ′(x) = dΦ(x)
dx and one recovers µ0 = ξεF in the limit of

zero-temperature.
The entropy S is readily calculated from the free energy F through the
relation

S = −
(
∂F

∂T

)
N,V

= −NkBΦ′(x) . (16)

where Φ′(x) is the first derivative of Φ with respect to x .



Universal thermodynamics (IV)

Furthermore, the internal energy E = F + TS , can immediately be
rewritten as

E = NεF [Φ(x)− x Φ′(x)] (17)

and, similarly, the pressure P is related to the free energy F by the simple
relation

P = −
(
∂F

∂V

)
N,T

=
2

3
nεF [Φ(x)− xΦ′(x)] . (18)

Remark: Adopting the Maxwell-Boltzmann distribution for fermionic
single-particles instead of the Fermi-Dirac one, and under the further
assumption that λ = 0, the adimensional fee energy becomes

Φ(x) ' 3

5
ξ − π4

√
3

80 ξ3/2
x4 − 3

√
2π

2
ζ1/2γ1/2x3/2e−γ/x . (19)

This expression was proposed by Bulgac, Drut and Magierski.10 We call
this equation the BDM model.

10A. Bulgac, J.E. Drut, and P. Magierski, Phys. Rev. Lett 96, 090404 (2006).



Universal thermodynamics (V)
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Thermodynamical quantities of the unitary Fermi gas deduced from our model
as a function of the adimensional temperature T/TF with TF = εF/kB the
Fermi temperature. Plot taken from LS, Phys. Rev. A 82, 063619 (2010),
where ξ = 0.42, λ = 0.25, ζ = 0.9, and γ = 0.45.



Universal thermodynamics (VI)
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Scaled internal energy E/(NεF ) as a function of the scaled temperature T/TF .
Filled circles: Monte Carlo simulations [Phys. Rev. A 78, 023625 (2008)].
Open squares with error bars: experimental data [Science 442, 327 (2010)].
Solid line: our model with ξ = 0.42, λ = 0.25, ζ = 0.9, and γ = 0.45. Dashed
line: Bulgac-Drut-Magierski (BDM) model. Plot taken from LS, Phys. Rev. A
82, 063619 (2010).



Superfluid fraction and critical temperature (I)

According to Landau’s two fluid theory11 the total number density n of a
system in the superfluid phase can be written as

n = ns + nn , (20)

where ns is the superfluid density and nn is the normal density. Naturally,
at zero temperature the whole system is in the superfluid phase, and one
has nn = 0 and n = ns. As the temperatures increases, the normal
density nn increases, as well, until at the critical temperature Tc one has
nn = n and, correspondingly, ns = 0. Within our scheme, the normal
density of a unitary gas is given the sum of two contributions

nn = nn,sp + nn,sp , (21)

i.e. a contribution nn,sp from to the single-particle excitations and a
contribution nn,col from collective excitations.

11L.D. Landau, J. Phys. (USSR) 5, 71 (1941).



Superfluid fraction and critical temperature (II)

Landau linked the normal densities to their statistic and their energy
spectrum, so that in the present case the single-particle contribution to
the normal density reads

nn,sp =
1

kBTV

∑
k

k2 eεsp(k)/(kBT )

(eεsp(k)/(kBT ) + 1)2
, (22)

whereas, concerning the contribution from the collective modes,

nn,col =
1

2kBTV

∑
q

q2 eεcol(q)/(kBT )

(eεcol(q)/(kBT ) − 1)2
. (23)



Superfluid fraction and critical temperature (III)

It is then easy to derive the superfluid fraction

ns

n
= 1− Ξ(x) , (24)

where the universal function Ξ(x) is again a function of the scaled
temperature x ≡ T/TF only, explicitly given by

Ξ(x) =
2

x

∫ +∞

0

e ε̃sp(η)/x

(e ε̃sp(η)/x + 1)2
η4dη

+
1

x

∫ +∞

0

eω̃col(η)/x

(eω̃col(η)/x − 1)2
η4dη , (25)

where we have converted sums to integrals.



Superfluid fraction and critical temperature (IV)

The superfluid density defines the critical temperature Tc of the
superfluid-to-normal phase transition via the condition ns = 0. With our
choice of parameters for the elementary excitations we find

Tc = 0.23 TF . (26)

It must be pointed out that, while this estimation of the critical
temperature agrees with more refined approaches, such as the functional
GPF theory12 or the NSR scheme,13 it actually differs from the most
recent experimental results,14 placing it at Tc/TF ' 0.17.
The overestimation of our theoretical critical temperature with respect to
the experimental ones does not appear plotting the physical quantities vs
T/Tc .

12H. Hu, X. J. Liu, and P. D. Drummond, EPL 74, 574 (2007); J. Tempere and J.
P. Devreese, Superconductors: Materials, Properties and Applications, InTech 383
(2012).

13P. Nozieres and S. Schmitt-Rink, J. Low. Temp. Phys. 59, 195 (1985).
14X. Li et al., Science 375, 528 (2022).



Superfluid fraction and critical temperature (V)

Superfluid fraction ns/n as a function of the adimensional temperature T/Tc .
Comparison between our theory and recent experimental data [X. Li et al.,
Science 375, 528 (2022)]. Plot adapted from G. Bighin, A. Cappellaro, and LS,
Phys. Rev. A 105, 063329 (2022), where ξ = 0.38, λ = 0.08, ζ = 0.9, and
γ = 0.45.



First and second sound (I)

According to Landau, in a superfluid a local perturbation excites two
wave-like modes the first and the second sound which propagate with
velocities u1 and u2. These velocities are determined by the positive
solutions of the algebraic biquadratic equation

u4 + (c2
10 + c2

20)u2 + c2
T c

2
20 = 0 , (27)

where

c10 =

√
1

m

(
∂P

∂n

)
S̄,V

= vF

√
5

9
Φ(x)− 5

9

T

TF
Φ′(x) (28)

is the adiabatic sound velocity with S̄ = S/N the entropy per particle,

c20 =

√√√√ 1

m

S̄2(
∂S̄
∂T

)
N,V

ns

nn
= vF

√
−1

2

Φ′(x)2

Φ′′(x)

1− Ξ(x)

Ξ(x)
(29)

is the entropic sound velocity, and

cT =

√
1

m

(
∂P

∂n

)
T ,V

= vF

√
5

9

(
Φ(x)− T

TF
Φ′(x)

)
+

2

9
x2Φ′′(x) (30)

is the isothermal sound velocity.



First and second sound (II)

The first sound u1 is the largest of the two positive roots of Eq. (27)
while the second sound u2 is the smallest positive one. Thus

u1,2 =

√√√√c2
10 + c2

20

2
±

√(
c2

10 + c2
20

2

)2

− c2
20c

2
T . (31)

For the sake of completeness, we stress that the “Einstein-like relation”

E

N
=

10

9
mc2

10 (32)

derived in a recent paper15 is automatically verified within our universal
thermodynamic formalism, that naturally includes the scale-invariance of
the unitary Fermi gas.

15P. B. Patel et al., Science 370, 1222 (2020).



First and second sound (III)

First sound velocity u1 and second sound velocity u2 as a function of the
adimensional temperature T/Tc . Here vF =

√
2εF/m is the Fermi velocity.

Comparison between our theory and recent experimental data [X. Li et al.,
Science 375, 528 (2022)]. “No mixing” means the (wrong) assumption that
cT = c10. Plot adapted from G. Bighin, A. Cappellaro, and LS, Phys. Rev. A
105, 063329 (2022).



Sound mixing (I)

It is useful to analyze the amplitudes modes W1and W2 of the response
to a density perturbation,16 i.e.

δn(x , t) = W1δn1(x ± u1t) + W2δn2(x ± u2t) (33)

where
W1

W1 + W2
=

(u2
1 − c2

20) u2
2

(u2
1 − u2

2) c2
20

(34)

and
W2

W1 + W2
=

(c2
20 − u2

2) u2
1

(u2
1 − u2

2) c2
20

. (35)

16T. Ozawa and S. Stringari, Phys. Rev. Lett. 112, 025302 (2014).



Sound mixing (II)

Superfluid 4He is characterized by “no mode mixing” (i.e. cT ' c10): the
first sound corresponds to a standard density waves (in-phase oscillations
of the superfluid and normal components) and the second sound is
understood as an entropy wave. It is important to notice that, under the
“no-mixing condition” c10 = cT , Eqs. (34) and (35) read W1 = 1 and
W2 = 0. This means that, in this case, a density probe excites only the
first sound mode.

For the unitary Fermi gas the situation is radically different17 because the
isothermal velocity cT and the adiabatic velocity c10 are quite different.
Thus, we expect that W1 6= 1 and W2 6= 0 for the unitary Fermi gas.

17L. P. Pitaevskii and S. Stringari, pp. 322-347, in Universal Themes of
Bose-Einstein Condensation Edited by N.P. Proukakis, D.W. Snoke, and P.B.
Littlewood (Cambridge University Press, 2017).



Sound mixing (III)
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Contribution from the first (dashed red line) and second sound (solid blue line)
to the amplitude of a density response as a function of the scaled temperature
T/Tc . Figure adapted from G. Bighin, A. Cappellaro, and LS, Phys. Rev. A
105, 063329 (2022).



Conclusions

A simple description in terms of fermionic single-particle and bosonic
collective elementary excitations is able to reproduce many
properties of the unitary Fermi gas.

The internal energy derived from our model is in good agreement
with Monte Carlo simulations and experimental results for
T ≤ 0.25TF .

We have reproduced the recently-measured superfluid fraction, first
sound and second sound near the critical temperature Tc ' 0.2TF .

Contrary to Helium 4, near the critical temperature the first and
second sound of the unitary Fermi gas cannot be interpreted as a
pure pressure-density wave and a pure entropy-temperature wave,
respectively.

Our investigation of the unitary Fermi gas shows that at very low
temperatures the mixing of pressure-density and
entropy-temperature oscillations is absent, whereas approaching Tc

a density probe will excite both sounds.
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