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2D Bose-Bose mixture with Rabi coupling (I)

We consider a 2D atomic Bose gas confined in a quadratic region of area
L2. The bosonic gas is characterized by two-hyperfine components with
bosonic complex fields ψa(r, t), a = 1, 2. The Lagrangian density of the
system reads

L =
∑
a=1,2

[
i~ψ∗a∂tψa −

~2

2m
|∇ψa|2 −

g

2
|ψa|4

]
− g12|ψ1|2|ψ2|2

+ ~ωR [ψ∗1ψ2 + ψ∗2ψ1] . (1)

In addition to the usual intra-species (g = g11 = g22) and inter-species
(g12) contact interactions, atoms with mass m in different hyperfine
states interact also via an external coherent Rabi coupling of frequency
ωR, which drives an exchange of atoms between the two components.



2D Bose-Bose mixture with Rabi coupling (II)

The presence of the Rabi coupling implies that only the total number

N = N1(t) + N2(t) (2)

of atoms is conserved, with

Na(t) =

∫
L2

|ψa(r, t)|2 d2r (3)

the number of atoms in the a-th hyperfine component (a = 1, 2).
The existence and stability of the symmetric ground state with N1 = N2

have been previously discussed1. In addition to the symmetric
configuration, a ground state with non-zero population imbalance is also
possible2

Here we focus on the symmetric and uniform configuration analyzing
finite temperature effects.

1M. Abad and A. Recati, Eur. Phys. J. D 67 (7), 148 (2013).
2C. P. Search, A. G. Rojo, and P. R. Berman, Phys. Rev. A 64, 013615 (2001).



2D Bose-Bose mixture with Rabi coupling (III)

At the mean-field level, for the symmetric and uniform ground state,
characterized by n1 = n2 = n/2, the chemical potential µ reads

µ =
1

2
gn(1 + η)− ~ωR , (4)

where n = N/L2 is the 2D total number density of bosons, with g > 0
and η = g12/g .
This symmetric and uniform ground state is stable under the
conditions3

g + g12 > 0 and (g − g12)n + 2~ωR > 0 , (5)

namely

−1 < η < 1 +
2~ωR

gn
. (6)

3M. Abad and A. Recati, Eur. Phys. J. D 67 (7), 148 (2013).



Elementary excitations (I)

At zero temperature, the Bogoliubov spectrum of elementary excitations
of the uniform system has two branches4, given by

E
(−)
k =

√
~2k2

2m

[
~2k2

2m
+ 2
(
µ+ ~ωR

)]
, (7)

E
(+)
k =

√
~2k2

2m

[
~2k2

2m
+ 2A

]
+ B , (8)

where µ is the chemical potential. Moreover the two parameters
appearing in the gapped branch are

A =
1

2
gn(1− η) + 2~ωR , (9)

B = 4~ωR

[
1

2
gn(1− η) + ~ωR

]
, (10)

again with η = g12/g and g = g11 = g22.

4A. Cappellaro, T. Macri, G. F. Bertacco, and LS, Sci. Rep. 7, 13358 (2017).



Elementary excitations (II)

For small wavenumbers, i.e. for k � 1, the elementary excitations (7)
and (8) read

E
(−)
k =

√
gn(1 + η)

2m
~k (11)

E
(+)
k =

√
B +

A

2
√
B

~2k2

m
, (12)

showing explicitly that the mode E
(−)
k is gapless while the mode E

(+)
k is

gapped (if ωR 6= 0). Notice that

cB =

√
gn(1 + η)

2m
(13)

is the Bogoliubov speed of sound for the uniform system. For η = 1 one
recovers the familiar expression cB =

√
gn/m, while A =

√
B = 2~ωR.



Superfluid density (I)

Adopting the Landau’s approach5, at finite temperature T the superfluid
density ns of the system can be written as

ns(T ) = n − n(−)
n (T )− n(+)

n (T ) (14)

where

n(−)
n (T ) = −1

4

∫
d2k

(2π)2

~2k2

m
f ′T (E

(−)
k ) (15)

n(+)
n (T ) = −1

4

∫
d2k

(2π)2

~2k2

m
f ′T (E

(+)
k ) (16)

are the thermally activated normal densities due to the elementary
excitations. In these formulas, f ′T (E ) is the derivative with respect to E
of the Bose function fT (E ) = 1/[eE/(kBT ) − 1] with kB the Boltzmann
constant and T the absolute temperature.

5L.D. Landau, J. Phys. (USSR) 5, 71 (1941).



Superfluid density (II)

By using the low-momenta results (11) and (12), after integration we find

n(−)
n (T ) =

3ζ(3)

4π~2mc4
B

(kBT )3 , (17)

n(+)
n (T ) = − m

4π~2

B

A2
kBT ln

(
1− e

−
√

B
kBT

)
, (18)

where ζ(x) is the Riemann zeta function and ζ(3) = 1.20206. For η = 1
the formula of the superfluid density becomes quite simple

ns(T ) = n − 3ζ(3)m(kBT )3

4π~2(gn)2
+

mkBT

4π~2
ln

(
1− e

− 2~ωR
kBT

)
, (19)

because the role of the interaction is only encoded in the gapless
excitation while the role of the Rabi coupling is only encoded in the
gapped excitation.



Renormalized superfluid density (I)

It is important to stress that the superfluid density derived with the
Landau formula does not take into account the formation of quantized
vortices. This superfluid density goes to zero at a critical temperature
that is larger than Tc, the critical temperature of the
Berezinskii-Kosterlitz-Thouless phase transition induced by the unbinding
of vortex-antivortex pairs and the proliferation of free quantized vortices.6

Extending the approach of Kosterlitz and Thouless, we derive and solve
Renormalization Group (RG) equations for our binary Bose mixture with
balanced densities.7 From these equations, which have the “bare”
Landau superfluid density an an input, we obtained a renormalized
superfluid density.

6V.L. Berezinskii, Sov. Phys. JETP 34, 610 (1972); J. M. Kosterlitz and D. J.
Thouless, J. Phys. C: Solid State Phys. 6, 1181 (1973).

7K. Furutani, A. Perali, and LS, Phys. Rev. A 107, L041302 (2023).



Renormalized superfluid density (II)

The renormalized superfluid density ns(τ = +∞) is obtained by solving
the generalized Kosterlitz-Thouless RG equations8

∂τ K
−1(τ) = 4π3Θ(ωR)y2(τ)

∂τ y(τ) = [2− πΘ(ωR)K (τ)] y(τ) (20)

where K (τ) = ns(τ)/T , with ns(τ) the superfluid density at the
adimensional fictitious time τ , and y(τ) = exp [−µc(τ)/T ] is the fugacity,
where µc(τ) is the vortex chemical potential at fictitious time τ . Here

Θ(ωR) =

{
1/2 for ωR = 0

1 for ωR 6= 0
(21)

takes into account the quite peculiar formation of “half-vortices” for
ωR = 0: one vortex in the hyperfine state a and no vortex in the
hyperfine state 3− a. For ωR 6= 0 these “half-vortices” are unstable.9

8K. Furutani, A. Perali, and LS, Phys. Rev. A 107, L041302 (2023).
9M. Kobayashi, M. Eto, and M. Nitta, Phys. Rev. Lett. 123, 075303 (2019).



Renormalized superfluid density (III)

Renormalized superfluid fraction ns/n as a function of the temperature T
for g̃ = mg/~2 = 0.1 and η = g12/g = 0. Here ω̄R = ~ωR/(n~2/m).
Grey dashed curve: single-component Bose gas. Thin dotted curves: bare
superfluid fraction. The thin solid line and thin dotted line stand for
kBT = π~2ns(T )/(4m) and kBT = π~2ns(T )/(2m) respectively. [K.
Furutani, A. Perali, and LS, Phys. Rev. A 107, L041302 (2023)].



Renormalized superfluid density (IV)

3D plot of the renormalized superfluid fraction ns/n as a function of
temperature T and adimensional Rabi coupling ~ωR/(n~2/m). Also here
g̃ = mg/~2 = 0.1 and η = g12/g = 0. [K. Furutani, A. Perali, and LS,
Phys. Rev. A 107, L041302 (2023)].



BKT critical temperature (I)

Our RG equations give a modified Nelson-Kosterlitz criterion

kBTc =
π~2

2m
Θ(ωR)ns(Tc), (22)

at the BKT critical temperature Tc, where

Θ(ωR) =

{
1/2 for ωR = 0

1 for ωR 6= 0
(23)

This criterion (22) is consistent with a recent Monte Carlo analysis.10

10M. Kobayashi, M. Eto, and M. Nitta, Phys. Rev. Lett. 123, 075303 (2019).



BKT critical temperature (II)

Maximal BKT critical temperature Tmax
c (for all the values of g12) as a

function of the adimensional Rabi coupling ω̄R = ~ωR/(n~2/m) for three

values of g̃ = mg/~2 = 0.01, 0.1, 0.5. Here T
(0)
c is the BKT temperature

of the single-component case. [K. Furutani, A. Perali, and LS, Phys.
Rev. A 107, L041302 (2023)].



BKT critical temperature (III)

Phase diagram of the binary Bose mixture and the BKT transition
temperature to inter-component coupling η = g12/g and Rabi coupling
ω̄R = ~ωR/(n~2/m). SF means “superfluid” and N means “normal”.
Above the solid vertical lines the system enters in the polarized phase.
Gray dotted curve: Tc vs η with ωR such that η = 1 + 2~ωR/(gn). [K.
Furutani, A. Perali, and LS, Phys. Rev. A 107, L041302 (2023)].



First and second sound (I)

We have seen that, according to Landau’s two fluid theory11 of
superfluids, the total number density n of a system in the superfluid
phase can be written as

n = ns + nn , (24)

where ns is the superfluid density and nn is the normal density. At the
critical temperature Tc one has nn = n and, correspondingly, ns = 0.

Following Landau, in a superfluid a local perturbation excites two
wave-like modes - first and second sound - which propagate with
velocities c1 and c2. These velocities are determined by the positive
solutions of the algebraic biquadratic equation

c4 + (v2
A + v2

L )c2 + v2
T v

2
L = 0 . (25)

The first sound c1 is the largest of the two positive roots of Eq. (25)
while the second sound c2 is the smallest positive one.

11L.D. Landau, J. Phys. (USSR) 5, 71 (1941).



First and second sound (II)

In the biquadratic equation there is the adiabatic sound velocity

vA =

√
1

m

(
∂P

∂n

)
S̄,V

(26)

with S̄ = S/N the entropy per particle, the entropic sound (or Landau)
velocity,

vL =

√√√√ 1

m

S̄2(
∂S̄
∂T

)
N,V

ns

nn
(27)

with ns/nn the ratio between superfluid and normal density, and the
isothermal sound velocity

vT =

√
1

m

(
∂P

∂n

)
T ,V

. (28)



First and second sound (III)

All the needed thermodynamical quantities can be derived from the
Helmholtz free energy12

F =
1 + η

4

gN2

L2
− ~ωRN + L2kBT

∫
d2k

(2π)2

[
ln
(

1− e−E
(−)
k /(kBT )

)
+ ln

(
1− e−E

(+)
k /(kBT )

)]
. (29)

In particular, we have

P = −
(
∂F

∂L2

)
N,T

, (30)

S̄ =
1

mN

(
∂F

∂T

)
N,L2

. (31)

12K. Furutani, A. Tononi, and LS, New J. Phys. 23 043043 (2021); K. Furutani, A.
Perali, and LS, Phys. Rev. A 107, L041302 (2023).



First and second sound (IV)

First sound and second sound velocities c1,2 scaled by the Bogoliubov

velocity cB =
√
gn(1 + η)/(2m) as a function of the temperature T with

g̃ = mg/~2 = 0.1. The thin dotted curves represent c1,2 in a
single-component Bose gas. Here η = g12/g and ω̄R = ~ωR/(n~2/m).
[K. Furutani, A. Perali, and LS, Phys. Rev. A 107, L041302
(2023)].



Conclusions

We have investigated BKT transition in a Rabi-coupled binary Bose
mixture under balanced densities.

We have found that the renormalized superfluid fraction and the
BKT critical temperature are strongly dependent on Rabi coupling
and interaction strengths.

We have also studied the first sound and second sound velocity in
this binary Bose mixture by adopting and extending the Landau’s
two-fluid model.
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