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Modeling an elongated Josephson junction (I)

We start from the following Lagrangian density which consists of two
weakly-interacting Bose-Einstein quasi-condensates (j = 1, 2) made of
atoms with mass m in one dimension

L =
2∑

j=1

[
i~ψ∗j (x , t)∂tψj(x , t)− ~2

2m
|∂xψj(x , t)|2 − g

2
|ψj(x , t)|4

]

+
J(x)

2
[ψ∗1 (x , t)ψ2(x , t) + ψ∗2 (x , t)ψ1(x , t)] , (1)

where ~ is the Planck constant. Here g is the interaction strength for
atoms of the same species, ψj(x , t) is the complex field of the j-th
quasi-condensate, and J(x) is the space dependent tunneling (hopping)
coupling.



Modeling an elongated Josephson junction (II)

In the rest of the paper, we assume that

J(x) = J0 δ(x) . (2)

with J0 a constant tunneling coupling, x ∈ [0, L] and L the length of the
two elongated Bose-Einstein quasi-condensates.



Modeling an elongated Josephson junction (III)

This configuration is however equivalent to a system where one
quasi-condensate is confined in the region [−L, 0] while the other
quasi-condensate is confined in the region [0, L], and the tunneling barrier
is located at x = 0.



Density-phase representation (I)

The complex field ψj(x , t) of the j-th quasi-condensate can be rewritten
by means of the Madelung representation

ψj(x , t) =
√
ρj(x , t) e iφj (x,t), (3)

where ρj(x , t) = |ψj(x , t)|2 is its local number density and φj(x , t) is the
local phase of the j-th quasi-condensate. Substituting the expression of
Eq. (3) into the Lagrangian in Eq. (1), we obtain

L =
2∑

j=1

[
i~
2
∂tρj − ~ρj∂tφj −

~2

2m

[
1

4ρj
(∂xρj)

2 + ρj(∂xφj)
2

]
− g

2
ρ2
j

]
+ J0δ(x)

√
ρ1ρ2 cos(φ1 − φ2) . (4)



Density-phase representation (II)

A compact description of the system is reached when we introduce the
relative phase and the population imbalance

φ(x , t) = φ1(x , t)− φ2(x , t) , (5)

ζ(x , t) =
ρ1(x , t)− ρ2(x , t)

2ρ̄
, (6)

with ρ̄ = N/L the average atomic density with N the number of bosons.
In this way we obtain a new Lagrangian density1

L = −~ρ̄ζφ̇− ~2ρ̄

4m
(∂xφ)2 − g(ρ̄2 + ρ̄2ζ2)

+ J(x)ρ̄
√

1− ζ2 cos(φ) (7)

in which we neglected space derivatives of the population imbalance.

1A. Tononi, F. Toigo, S. Wimberger, A. Cappellaro, and LS, New J. Phys. 22,
073020 (2020).



Density-phase representation (III)

We work with small values of the population imbalance, such that
|ζ(x , t)| � 1, and in the Josephson regime 2g ρ̄� J0δ(x). Under these
conditions the Euler-Lagrange equation of motion of ζ(x , t) is quite
simple

ζ(x , t) = −~φ̇(x , t)

2g ρ̄
. (8)

Inserting it into the previous Lagrangian density we obtain a Lagrangian
density2 for the relative phase field φ(x , t):

L =
~

4g
φ̇2 − ~2ρ̄

4m
(∂xφ)2 + J0δ(x) ρ̄ cos(φ) . (9)

This is the Lagrangian density of the so-called boundary sine-Gordon
model.3

2A. Tononi, F. Toigo, S. Wimberger, A. Cappellaro, and LS, New J. Phys. 22,
073020 (2020).

3P. Fendley, F. Lesage, and H. Saleur, J. Stat. Phys. 85, 211 (1996).



Quasi-particle description (I)

We now introduce a quasi-particle description for the phase field φ(x , t),
based on the following mode expansion

φ(x , t) =
1√
L

+∞∑
n=0

qn(t)Φn(x), (10)

where qn(t) are coordinates, and Φn(x) are real eigenfunctions satisfying
−~2/ (2m) ∂2

xΦn(x) = εnΦn(x) where εn = ~2k2
n/ (2m) and kn = πn/L,

and constituting an orthonormal basis
∫ L

0
Φn(x)Φm(x) dx = δn,m.

Inserting Eq. (10) into Eq. (9) gives

L =

∫ L

0

L dx =
M

2

+∞∑
n=0

q̇2
n −

M

2

+∞∑
n=0

ω2
nq

2
n + J0ρ̄ cos

(
1

L

+∞∑
n=0

qn

)
. (11)

Here we have defined

M =
~2

2gL
and ωn = cs kn , (12)

where cs =
√
ρ̄g/m is the speed of sound.



Quasi-particle description (II)

We identify the Josephson mode as the field at x = 0, namely

φ(x = 0, t) =
1

L

+∞∑
n=0

qn(t) =
Q0(t)

L
= φ0(t) , (13)

introducing a new “collective” Josephson variable Q0(t). After a
Legendre transformation from Eq. (11) we obtain the Hamiltonian

H =
P2

0

2M
+

+∞∑
n=1

[
(P0 + pn)2

2M
+

1

2
Mω2

nq
2
n

]
− J0ρ̄ cos(

Q0

L
) , (14)

which shows a coupling between the linear momentum P0(t) of the
Josephson mode with generalized coordinate Q0(t) and the linear
momenta pn(t) of the sound modes with generalized coordinates qn(t)
(n 6= 0). This Hamiltonian4 is similar (but ont equal) to the
Caldeira-Leggett one5.

4J. Polo et al., Phys. Rev. Lett. 121, 090404 (2018).
5A. O. Caldeira and A. J. Leggett, Phys. Rev. Lett. 46, 211 (1981).



Damped dynamics of the Josephson mode (I)

From the Hamilton equations of (14) we obtain

φ̈0(t) + γ0 φ̇0(t) + Ω2
0 sin(φ0(t)) = ξφ(t) , (15)

where

Ω0 =

√
ρ̄J0

ML2
(16)

is the Josephson frequency,

γ0 =
ρ̄J0

MLcs
(17)

is the damping coefficient due to the phonon bath and

ξφ(t) = −
+∞∑
n=1

[
ω2
n cos(ωnt)

qn(0)

L
+ ωn sin(ωnt)

q̇n(0)

L

]
(18)

is a noise due to the initial conditions of the phonon bath.



Damped dynamics of the Josephson mode (II)
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Relative phase dynamics of the Josephson mode without the effect of the
noise (ξφ(t) = 0). Time evolution of the Josephson relative phase φ0(t).
6 Here we consider the underdamped case with γQ = γ0/(2Ω0) < 1.
Initial conditions: φ0(0) = 0 and φ̇0(0)/Ω0 = 1.

6F. Binanti, K. Furutani, and LS, Phys. Rev. A 103, 063309 (2021).



The effect of the quantum-thermal noise (I)

We have seen that the noise ξφ(t) crucially depends on the initial
conditions qn(0) and q̇n(0) = pn(0)/M of the phonon bath, Eq. (18).
The phonon bath is characterized by infinite harmonic oscillators with
Hamiltonian

HB =
+∞∑
n=1

[
p2
n

2M
+

Mω2
n

2
q2
n

]
(19)

which we use to evaluate the ensemble average at temperature T where
qn(t) and pn(t) are quantum operators.
Thus, for a generic observabile A(t) its quantum-thermal average reads

〈A(t)〉 =
Tr
[
A(t) e−βHB

]
Tr [e−βHB ]

, (20)

where β = 1/(kBT ) with kB the Boltzmann constant and T the absolute
temperature of the bath of oscillators.



The effect of the quantum-thermal noise (II)

Clearly, one finds that

〈qn(t)2〉 =
~

Mωn

(
1

eβ~ωn − 1
+

1

2

)
(21)

〈pn(t)2〉 = M~ωn

(
1

eβ~ωn − 1
+

1

2

)
(22)

It is then possible to prove7 that the noise ξφ(t) is such that

〈ξφ(t)〉 = 0 , (23)

〈ξφ(t)ξφ(t ′)〉 =
+∞∑
n=1

~ω3
n

2ML2

[
coth(

β~ωn

2
) cos [ωn(t − t ′)]

− i sin [ωn(t − t ′)]

]
. (24)

7Note that
1

ex − 1
+

1

2
=

1

2
coth(

x

2
).



The effect of the quantum-thermal noise (III)

Considering the linearized damped equation with noise

φ̈0(t) + γ0 φ̇0(t) + Ω2
0 φ0(t) = ξφ(t) , (25)

because 〈ξφ(t)〉 = 0 one finds immediately

d2

dt2
〈φ0(t)〉+ γ0

d

dt
〈φ0(t)〉+ Ω2

0 〈φ0(t)〉 = 0 . (26)

Thus, the time evolution of 〈φ0(t)〉 is independent on the noise ξφ(t).

The dynamics of 〈φ0(t)〉 is the so-called mean-field solution, that we
have previously analyzed considering the case of damping in the absence
of noise.



The effect of the quantum-thermal noise (IV)

Morover, one finds that Eq. (25) admits a formal solution8

φ0(t) = e−γQΩ0t
sin(γJΩ0t)

γJ
+

∫ t

0

dt ′χ(t − t ′)ξφ(t ′), (27)

where

χ(t − t ′) =
2

ωD
e−γQΩ0(t−t′) sin

[ωD

2
(t − t ′)

]
θ(t − t ′), (28)

with θ(t) the Heaviside step function and

ωD =
√

4Ω2
0 − γ2

0 . (29)

8F. Binanti, K. Furutani, and LS, Phys. Rev. A 103, 063309 (2021).



Fluctuations of the Josephson mode (I)

We can then calculate9 the variance ∆φ0(t), i.e. the quadratic
fluctuation, of the Josephson relative phase φ0(t) = φ(x = 0, t), defined
as

∆φ0(t)2 = 〈φ0(t)2〉 − 〈φ0(t)〉2 . (30)

For the sake of completeness we report also the variance ∆ζ0(t) of the
Josephson population imbalance ζ0(t) = ζ(x = 0, t), defined as

∆ζ0(t)2 = 〈ζ0(t)2〉 − 〈ζ0(t)〉2 . (31)

In the high-temperature regime kBT � ~Ω0 we find analytical
expressions for the asymptotic values of the variations:

∆φ0(∞) =
1

Ω0

√
kBT

2ML2
, (32)

∆ζ0(∞) =

√
MkBT

2~2ρ̄2
. (33)

9In general, the numerical results depend on a ultraviolet cutoff kmax = πρ̄, where
ρ̄ = N/L is the average number density. We use ρ̄ = 103 µm−1.



Fluctuations of the Josephson mode (II)

Relative phase variance ∆φ0(t)2 (solid curves) and population imbalance
variance ∆ζ0(t)2 (dashed curves) of the Josephson mode as a function of
time t.10 The curves correspond to three different underdamped regimes
with a high temperature kBT/(~Ω0) = 10. The variances are nomalized
by their asymptotic values. Here γQ = γ0/(2Ω0) < 1.

10F. Binanti, K. Furutani, and LS, Phys. Rev. A 103, 063309 (2021).



Fluctuations of the Josephson mode (III)

Variance ∆ζ0(t)2 of the Josephson population imbalance as a function of
time t for three values of the temperature T of the bath of phonons.11

The damping coefficient γQ is set to be γQ = 1/10. Ω0 is the Josephson
frequency while η = MΩ0/(~ρ̄2).

11F. Binanti, K. Furutani, and LS, Phys. Rev. A 103, 063309 (2021).



Conclusions

We have investigated the dynamics of bosonic atoms in elongated
Josephson junctions.12

We have found that these systems are characterized by an intrinsic
coupling between the Josephson mode of macroscopic quantum
tunneling and the sound modes.

This coupling of Josephson and sound modes gives rise to a damped
and stochastic Langevin dynamics for the Josephson degree of
freedom.

The time evolution of the Josephson fluctuations exhibits a
thermalization to constant values after a transient characterized by
an oscillating dynamics.

We have recently adopted similar techniques to study the effect of
quantum and thermal fluctuations in superconducting Josephson
junctions.13

12F. Binanti, K. Furutani, and LS, Phys. Rev. A 103, 063309 (2021).
13K. Furutani and LS, arXiv:2104.14211, Phys. Rev. B, in press.
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