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Extended Thomas-Fermi density functional

The Thomas-Fermi (TF) energy functional∗ of a dilute and ultracold two-

component Fermi gas trapped by an external potential U(r) is

ETF =

∫

d3r n(r)[ε(n(r); aF ) + U(r)] , (1)

with ε(n; aF ) energy per particle, n(r) total density and aF the s-wave scat-

tering length. The total number of fermions is

N =

∫

d3r n(r) . (2)

By minimizing ETF one finds

µ(n(r); aF ) + U(r) = µ̄ , (3)

with µ(n; aF ) =
∂(nε(n;aF))

∂n bulk chemical potential of a uniform system and µ̄

chemical potential of the non uniform system.

∗S. Giorgini, L.P. Pitaevskii, and S. Stringari, RMP 80, 1215 (2008).



For the uniform unitary Fermi gas† the s-wave scattering length aF diverges:

aF → ±∞ , (4)

and the only length characterizing the uniform system is the average distance

between particles n−1/3. In this case:

ε(n; ξ) = ξ
3

5

~2

2m
(3π2)2/3n2/3 = ξ

3

5
εF , (5)

with εF Fermi energy of the ideal gas and ξ a universal parameter.

The bulk chemical potential associated to Eq. (5) is

µ(n; ξ) =
∂(nε(n))

∂n
= ξ

~2

2m
(3π2)2/3n2/3 = ξ εF . (6)

†“The Many-Body X Challenge Problem”, formulated by G.F. Bertsch, see R. A. Bishop,
IJMP B 15, iii (2001).



The TF functional must be extended to cure the pathological TF behavior

at the surface.

We add to the energy per particle the term

λ
~2

8m

(∇n)2
n2

= λ
~2

2m

(∇√
n)2

n
. (7)

Historically, this term was introduced by von Weizsäcker‡ to treat surface

effects in nuclei. Here we consider λ as a phenomenological parameter ac-

counting for the increase of kinetic energy due the spatial variation of the

density.

Other recent density-functional methods for unitary Fermi gas:

– the Kohn-Sham density functional approach of Papenbrock,

PRA 72, 041603 (2005);

– the superfluid local-density approximation of Bulgac,

PRA 76, 040502(R) (2007).

‡C.F. von Weizsäcker, ZP 96, 431 (1935).



The new energy functional, that is the extended Thomas-Fermi (ETF) func-

tional of the unitary Fermi gas, reads

E =

∫

d3r n(r)

[

λ
~2

8m

(∇n(r))2
n(r)2

+ ξ
3

5

~2

2m
(3π2)2/3n(r)2/3 + U(r)

]

. (8)

By minimizing the ETF energy functional one gets:
[

λ
~2

2m
∇2 + ξ

~2

2m
(3π2)2/3n(r)2/3 + U(r)

]

√

n(r) = µ̄
√

n(r) . (9)

This is a sort of stationary 3D nonlinear Schrödinger (3D NLS) equation.

The constants ξ and λ should be universal i.e. independent on the confining

potential U(r).



In a recent paper [S.K. Adhikari and L.S., PRA 78, 043616 (2008)] we have

used this simple choice

ξ = 0.44 and λ = 1/4 , (10)

for the unitary Fermi gas in a spherical harmonic potential

U(r) =
1

2
mω2r2 . (11)

ξ = 0.44 is a MC prediction for uniform unitary Fermi gas [Carlson et al. PRL

91 050401 (2003)].

λ ' 0.25 is the prediction at unitarity of effective field theory [G. Rupak and

T. Schäfer, NP A 816, 52 (2009)].

We compare the results of our 3D NLS equation with recent Monte Carlo

data§:
– Green-function Monte Carlo (GFMC) of Chang and Bertsch,

PRA 76 021603(R) (2007);

– Fixed-node diffusion Monte Carlo (FNDMC) of Dörte Blume et al.

PRL 99, 233201 (2007).

§They compare their MC data with an approximate N-expansion using λ = ξ/9 ' 0.05.
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Ground-state energy E (in units of ~ω) versus N . Solid line: ETF functional

with ξ = 0.44 and λ = 1/4. Dashed line: local density approximation (LDA),

i.e. the Thomas-Fermi model (λ = 0). The results of Green-function Monte

Carlo (GFMC) and fixed-node diffusion Monte Carlo (FNDMC) are shown for

a comparison (symbols). [S.K. Adhikari and L.S., NJP 11, 023011 (2009)]
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Unitary Fermi gas under harmonic confinement of frequency ω. Density pro-

files n(r) for N = 10 and N = 30 fermions obtained with ETF (solid lines)

and TF (dashed lines). In all calculations: universal parameter ξ = 0.44 and

gradient coefficient λ = 1/4. Lengths in units of aH =
√

~/(mω). [L.S. and

F. Toigo, PRA 78, 053626 (2008]



Finding the universal parameters of the ETF functional

To determine ξ and λ we look for the values of the two parameters which lead

to the best fit of the ground-state energies obtained by Monte Carlo data.

We use the more recent and reliable Monte Carlo results with N even

(complete superfluidity): the fixed-node diffusion Monte Carlo (FNDMC) of

J von Stecher, C.H. Greene and D. Blume, PRA 77 043619 (2008).

After a systematic analysis [L.S. and F. Toigo, PRA 78, 053626 (2008)] we

find

ξ = 0.455 and λ = 0.13

as the best fitting parameters in the unitary regime.¶ See the next figure.

Fixing ξ = 0.44 we find instead λ = 0.18.

¶The value ξ = 0.455 coincides with that obtained by A. Perali, P. Pieri, and G.C. Strinati,
PRL 93, 100404 (2004) with beyond-mean-field extended BCS theory.
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Ground-state energy E for the unitary Fermi gas of N atoms under harmonic

confinement of frequency ω. Symbols: FNDMC data with even N ; solid line:

ETF results with best fit (ξ = 0.455 and λ = 0.13). Energy in units of ~ω.

[L.S. and F. Toigo, PRA 78, 053626 (2008)]



Odd-even splitting

In our determination of ξ and λ we have analyzed the unitary gas with an

even number N of particles.

Monte Carlo calculations show a clear odd-even effect (zig-zag effect): the

ground state energy of N odd particles in the isotropic harmonic trap is

EN =
1

2
(EN−1 +EN+1) + ∆N , (12)

where the splitting ∆N is always positive.

Dam Thanh Son has suggested‖ that, given the superfluid cloud of even

particles, the extra particle is localized where the energy gap is smallest,

which is near the edge of the cloud.

‖D.T. Son, e-preprint arXiv:0707.1851.



Dam Thanh Son has also found that, for fermions at unitarity, confined by a

harmonic potential with frequency ω, the odd-even splitting grows as

∆EN = γ N1/9
~ω , (13)

where γ is an unknown dimensionless constant.

After a systematic investigation of the FNDMC data we find that

γ = 0.856

gives the best fit. See the next figure.
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Ground-state energy E for the unitary Fermi gas of N atoms under harmonic

confinement of frequency ω. Diamonds: DMC data with both even and odd

N ; solid line: optimized ETF results (ξ = 0.455, λ = 0.13, γ = 0.856).

Energy in units of ~ω. [L.S. and F. Toigo, PRA 78, 053626 (2008)]



Generalized superfluid hydrodynamics

Let us now analyze the effect of the gradient term on the dynamics of the

unitary Fermi gas.

At zero temperature the low-energy collective dynamics of this fermionic gas

can be described by the equations of generalized∗∗ irrotational hydrodynamics:

∂n

∂t
+ ∇ · (nv) = 0 , (14)

m
∂

∂t
v + ∇[ − λ

~2

2m

∇2√n√
n

+ µ(n; ξ) + U(r)] = 0 . (15)

They are the simplest generalization of the equations of superfluid hydrody-

namics of fermions††, where λ = 0.

∗∗Quantum hydrodynamics of electrons: N. H. March and M. P. Tosi, Proc. R. Soc. A 330,
373 (1972); E. Zaremba and H. C. Tso, PRB 49, 8147 (1994).

††S. Giorgini, L.P. Pitaevskii, and S. Stringari, RMP 80, 1215 (2008).



The generalized hydrodynamics equations can be written in terms of a

superfluid nonlinear Schrödinger equation (NLSE), which is Galilei-invariant.‡‡

In fact, by introducing the complex wave function

ψ(r, t) =
√

n(r, t) eiθ(r,t) , (16)

which is normalized to the total number N of superfluid atoms, and taking

into account the correct phase-velocity relationship

v(r, t) =
~

2m
∇θ(r, t) , (17)

where θ(r, t) is the phase of the condensate wavefunction of Cooper pairs,

the equation

i~
∂

∂t
ψ = [ − ~2

4m
∇2 + 2U(r) + 2µ(|ψ|2; ξ) + (1 − 4λ)

~2

4m

∇2|ψ|
|ψ| ]ψ , (18)

is strictly equivalent to the equations of generalized hydrodynamics.

‡‡H.-D. Doebner and G.A. Goldin, PRA 54, 3764 (1996).



Sound velocity and collective modes

From the equations of superfluid hydrodynamics one finds the dispersion

relation of low-energy collective modes of the uniform (U(r) = 0) unitary

Fermi gas in the form

Ω

q
=

√

ξ

3
vF , (19)

where Ω is the collective frequency, q is the wave number and

vF =

√

2εF
m

(20)

is the Fermi velocity of a noninteracting Fermi gas.

The equations of generalized superfluid hydrodynamics (or the superfluid

NLSE) give [L.S. and F. Toigo, PRA 78, 053626 (2008)] also a correct-

ing term, i.e.

Ω

q
=

√

ξ

3
vF

√

1 +
3λ

ξ
(

~q

2mvF
)2 , (21)

which depends on the ratio λ/ξ.



In the case of harmonic confinement

U(r) =
1

2
mω2r2 (22)

we study numerically the collective modes of the unitary Fermi gas by in-

creasing the number N of atoms.

By solving the superfluid NLSE we find that the frequency Ω0 of the monopole

mode (l = 0) and the frequency Ω1 dipole mode (l = 1) do not depend on

N :

Ω0 = 2ω and Ω1 = ω . (23)

We find instead that the frequency Ω2 of the quadrupole mode (l = 2)

depends on N and on the choice of the gradient coefficient λ.

Initial wave function to excite the quadrupole mode:

ψin(r) = ψgs(r) e
iε(2z2−x2−y2) , (24)

where ψgs(r) is the ground-state wave function and ε is a small parameter.
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Quadrupole frequency Ω2 of the unitary Fermi gas (ξ = 0.455) with N atoms

under harmonic confinement of frequency ω. Three different values of the

gradient coefficient λ. For λ = 0 (TF limit): Ω2 =
√

2ω. [L.S., F. Ancilotto

and F. Toigo, preliminary results]



Conclusions

• We have introduced an extended Thomas-Fermi (ETF) functional for the

trapped unitary Fermi gas.

• By fitting FNDMC calculations we have determined the universal param-

eters ξ and λ of ETF functional.

• ETF functional can be used to study ground-state density profiles in a

generic external potential U(r).

• We have also introduced a time-dependent version of the ETF functional:

the generalized superfluid hydrodynamics (or superfluid NLSE).

• The superfluid NLSE can be used to investigate collective modes also for

a small number of atoms.


