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Hydrodynamics of Fermi superfluids at zero-temperature

At zero temperature, hydrodynamics equations of a two-component fermionic
superfluid made of atoms of mass m are given by

0
pYi + V-(nv)=0 (1)
m%v + V %va +U(r) + pu(n,ap)| =0 (2)

where n(r,t) is the local density and v(r,t) is the local superfluid velocity. Here
n(r,t) = ny(r,t)+n(r,t) with ny(r,t) = n (r,t) and v(r,t) = v4(r,t) = v (r,1).

U(r) is the external potential and u(n,apr) is the bulk chemical potential, i.e.
the zero-temperature equation of state of the uniform system, which depends
on the Fermi-Fermi scattering length ag.

The density n(r,t) is such that

N = /n(r,t) d3r (3)

is the total number of atoms in the fluid. In fact, due to the absence of the
normal component, the superfluid density coincides with the total density and
the superfluid current with the total current.



Hydrodynamics equations of superfluids are nothing else than the Euler equa-
tions of an inviscid (i.e. not-viscous) and irrotational fluid. The condition of
irrotationality

VAv=0 (4)

means that the velocity v can be written as the gradient of a scalar field.
The connection between superfluid hydrodynamics and quantum mechanics
IS made by the formula

h

v=—V6 (5)
2m
where 6(r,t) is the phase of the condensate wave-function
=(r,t) = [Z(x,1)] 00 = (Py(r, )P, (x, 1)) (6)

with ¥ (r,t) the fermionic field operator with spin component o =1, |.
Notice 2m (Cooper pairs) instead of m in Eq. (5).

The condensate fraction of the Fermi superfluid is
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Condensate fraction No/N of Fermi pairs in the BCS-BEC crossover as a function of the
interse interaction parameter y = (krar)~! (solid line and joined diamonds). Open circles
with error bars: the same quantity from the MIT experiment [M.W. Zwierlein et al., PRL

94, 180401 (2005)].
From L.S., N. Manini, A. Parola, PRA 72, 023621 (2005).



In the BCS-BEC crossover the bulk chemical potential can be written as

2
un,ap) = o (3n%n) 7 (1) - L) (®)

where f(y) is a dimensionless universal function of the inverse interaction
parameter

I 1
v krap - (37r2n)1/3ap

(9)

with kr = (372n)1/3 the Fermi wavenumber and ap the Fermi-Fermi scatter-
ing length.

We parametrize f(y) as follows

(10)

B1 + |y|>
B2 + |y
where the values of the parameters a1, as, asz, 81,82 are reported in N. Manini
and L.S., PRA 71, 033625 (2005). This reliable fitting function is based
on asymptotics and fixed-node Monte-Carlo data [G.E. Astrakharchik et al.,
PRL 93, 200404 (2004)].

f(y) = a1 — anarctan <a3 J



Hydrodynamics equations of superfluids describe efficiently:
i) static properties;
ii) low-energy collective dynamics with X > ¢,
where A\ is the wavelength of the mode, £ is healing length of the superfluid
(e.g. they give the correct Bogoliubov-Anderson-Goldstone mode).
Combescot, Kagan and Stringari [PRA 74, 042717 (2006)] suggest

f=_" (11)

™MUer

where vqr is the Landau critical velocity (Landau criterion for dissipation).
In the BEC regime of bosonic dimers v coincides with the sound velocity,

I.e.
0
Ver = Cs = \/2—'“ (12)
mon

In the BCS regime vqr iS instead related to the breaking of Cooper pairs
through the formula

2 2
%FW“ el (13)

m

where |A| is the energy gap of Cooper pairs. Unfortunately, the equations of
superfluid hydrodynamics do not take into account the effect of pair breaking.
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Landau'’s critical velocity (in units of Fermi velocity) calculated along the BCS-BEC crossover.
The figure clearly shows that the critical velocity is largest close to unitarity.
From R. Combescot, M.Yu. Kagan and S. Stringari, PRA 74, 042717 (2006).



Superfluid NLSE for the BCS-BEC crossover

Inspired by Ginzburg-Landau theory, by density functional theory (DFT), and
by low-energy effective field theory (EFT), we introduce the complex wave
function

n(r,t) io(r,t)

W(r,t) = 5 (14)
which describes boson-like Cooper pairs with the normalization
N
/|\U(r,t)|2d3r =3 (15)

that is quite different from the normalization of the condensate wave function
=(r,t), but the phase 0(r,t) is the same.

By imposing the (fermionic) velocity-phase relationship

h
v=—V6 (16)

2m
one can search the simplest nonlinear Schrédinger equation of W(r,¢) which
satisfies Eq. (16) and reproduces the equations of superfluid hydrodynamics

in the classical limit (A — 0).



We find that the nonlinear Schrodinger equation

2
zhg W(r,t) = —j—VQ + 2U(r) 4+ 2u(n(r,t),ap) | W(r,t) (17)

gives the equations of superfluid hydrodynamics in the classical limit (A — 0).
In general, our superfluid NLSE gives the hydrodynamics equations with an
additional quantum pressure term
2 o2
Top =~ Y V" (18)
8m +/n

which depends explicitly on the reduced Planck constant & (gradient correc-
tion in DFT, next-to-leading correction in low-energy EFT).

In the deep BEC regime from Eq. (17) one recovers the familiar Gross-
Pitaevskii equation for Bose-condensed dimers (molecules of two fermions),
where

47rh2add(ap) n

u(n,ap) = (19)

2m
with ay4(ap) the dimer-dimer scattering length, which depends on the Fermi-
Fermi scattering length ap. Mean-field theory: ayg4(ap) = 2ap; four-body
theory and also MC data: ayg4(ar) = 0.6ap.



Direct current Josephson effect

We use our time-dependent superfluid NLSE

2
zhg W(r,t) = —f—Vz + 2U(r) 4+ 2u(n(r,t),ap) | W(r,t) (20)

to study the DC Josephson effect. We choose a square-well barrier

)V for |z| <d
Ur) = { O elsewhere (21)

which separates the superfluid into two regions, and look for a stationary
solution

W(r,t) = d(r) ef) g—i2ut/h (22)
with constant and uniform supercurrent
J=n()v(r) = zcb(r)?ive(r) (23)
It follows (V)2 = J2/®% and also
25 o om J? _
——V* + +2U(r) + 2u(n(r),ap) | ®(r) = 2p P(r) (24)

4m 4 d(r)d



We solve the stationary superfluid NLSE by imposing a constant and uniform
density n at infinity:

d(r) — \/g for |r| — oo (25)
Given &(r) at fixed J, the phase 6(r) is then obtained from
mJ [ 1
O(r) =40 - d 26
(1) = 0(r0) + == | 55z (26)

The phase difference across the barrier is defined as

A =0(z=40) —0(z=—00) (27)

In this way we are able to determine the relationship between the current J
and the phase difference AS.
We expect to recover the Josephson equation

J = Jgsin (Af) (28)

in the regime of high barrier (small tunneling, weak-link). Instead, in the limit
of very small barrier (quasi-free transport, strong-link) Jy has its maximum
value

JT = 7 vy (29)

where vqr 1S the Landau critical velocity.
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DC Josephson current J vs phase difference A6 for a superfluid Fermi gas at unitarity (y = 0).
Three values of the energy barrier Vg, with e = A2(37%n)?/3/(2m) the Fermi energy. Width
of the barrier: Lkr = 4.

From: preliminary results of F. Ancilotto, L.S., F. Toigo (June 20083).
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Maximal Josephson current JJ*** vs inverse interaction parameter y = 1/(krar) in the BCS-
BEC crossover. Curves: superfluid NLSE. Symbols: microscopic mean-field calculations of
Spuntarelli, Pieri, Strinati [PRL 99, 040401 (2007)]. Four values of the energy barrier Vy/ep:

0.025, 0.10, 0.2, 0.4. Width of the barrier: Lkr = 4.
From: preliminary results of F. Ancilotto, L.S., F. Toigo (June 20083).



Alternate current Josephson effect

Let us now consider a high barrier (small tunneling, weak-link) without im-
posing a constant supercurrent J.

We start from our time-dependent superfluid NLSE

2
zhg W(r,t) = —f—VQ + 2U(r) + 2u(n(r,t),ap) | W(r,t) (30)

and look for a time-dependent solution of the form

W(r,t) = ca(l) Pa(r) +cp(t) Pp(r) (31)
where ® 4(r) and $g(r) is the quasi-stationary solutions normalized to one

and localized in region A and B respectively.
In this way we obtain* the following two-state model

i ealt) = Ea(t) eald) + K ep(t) (32)
ih 2 ep(t) = Ep(t) en(t) + K ealt (33)

for the two complex coefficients c4(¢t) and cg(t), which give the number of
atoms in the two regions.

*L.S., N. Manini, F. Toigo, PRA 77, 043609 (2008).



In our two-state model, E 4(t) is the time-dependent energy in region A, given
by

2

M2 oue) + 24 (2ea(®PD ()2, ap)| Par) dCr
4m

Bat) ~ [ ®a()

(34)
There is obviously a similar expression for the time-dependent energy Eg(t).

The constant coupling energy K describes instead the tunneling between the
two regions A and B:

2

K ~ /ch(r) —j—mVQ + 2U(r)| ©5(r) &3r (35)

From our previous analysis of the DC Josephson effect, we expect that this
expression is correct only in the right side of the BCS-BEC crossover.

To study the Josephson effect in the left side of the BCS-BEC crossover one
can use K as a phenomenological parameter a la Feynman.T

fR.P. Feynman, R. Leighton, M. Sands, Feynman Lectures on Physics, vol. 3 (Addison
Wesley, Reading, 1966);
R.P. Feynman, Statistical Mechanics. A set of Lectures (Benjamin, Reading, 1973).



We can write the complex coefficient c4(t) as
Na(t)
ca(t) = | M4 040 (36)

with N4(t) number of atoms and 6(t) phase in region A. Again, there is a
similar expression for cg(t).
In terms of the phase difference

p(t) = 0p(t) —04(%) (37)
and relative number imbalance
Np(t) — Na(t) _ Np(t) — Na(t)

W= N+ Ng®) N ’ (38)
the two-mode equations give
| 2K 5
A = - V1= 2(5)2 singp(t),
. 2 N N 2K z(t)
o) = = (5@ +20)) - n (50 - 20)) |+ e cos (1)

These are the atomic Josephson junction (AJJ) equations describing the
oscillations of N Fermi atoms tunneling in the superfluid state between region
A and region B, both with volume V.



Our nonlinear AJJ equations can be linearized around the stable stationary
solution

z=0 and ¢ =2xj (39)

where j5 is an integer. One finds the following frequency of small oscillation

K 2mc2
= —1/1 5 40
— + % (40)
which is called zero-mode. Here c¢5 is the sound velocity computed at the
mean density n = N/V of the superfluid. The zero-mode is the analog of the

Josephson plasma frequency in superconducting junctions.

o

From our AJJ equationsi one finds also the w-mode solution with z = 0
and ¢ = w(27 + 1) and the self-trapping solution with population imbalance

(Z # 0).

Notice that our AJJ equations generalize the BJJ equations obtained by
Smerzi et al. [PRL 79, 4950 (1997)] for Bose-Einstein condensates.

IL.S., N. Manini, F. Toigo, PRA 77, 043609 (2008).
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Zero-mode in the AC Josephson effect by solving AJJ equations. N = 10° 40K atoms between
two symmetric regions of volume 25-10° um3, tunneling parameter K /kg = 10~° Kelvin and
Fermi-Femri scattering length ar = 1 um, corresponding to y = 1.19. Solid line: population
imbalance z(t); dashed line: phase difference ¢(t). Initial conditions: ¢(0) = 0 and z(0) = 0.5
(left); ¢(0) =0 and z(0) = 0.999 (right).

From L.S., N. Manini, F. Toigo, PRA 77, 043609 (2008).



Conclusions

We have discussed a superfluid NLSE which gives hydrodynamic equations
of Fermi superfluids plus a gradient correction.

Hydrodynamics equations and superfluid NLSE are reliable to investigate:
i) static properties;
ii) low-energy collective dynamics.

In the study of the DC Josephson effect, our superfluid NLSE works quite
well in the right side of the BCS-BEC crossover.

In the study of DC and AC Josephson effects, our superfluid NLSE works
efficiently for the full BCS-BEC crossover by using a phemenological tun-
neling parameter in the left side of the crossover. In this way we get the
AJJ equations.

THANKS!!



