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A1. BCS-BEC crossover in 3D and 2D (I)

In 2004 the 3D BCS-BEC crossover has been observed with ultracold
gases made of two-component fermionic 40K or 6Li atoms.1

This crossover is obtained using a Fano-Feshbach resonance to change
the 3D s-wave scattering length aF of the inter-atomic potential.

1C.A. Regal et al., PRL 92, 040403 (2004); M.W. Zwierlein et al., PRL 92, 120403
(2004); J. Kinast et al., PRL 92, 150402 (2004).



A1. BCS-BEC crossover in 3D and 2D (II)

Recently also the 2D BEC-BEC crossover has been achieved
experimentally2 with a Fermi gas of two-component 6Li atoms. In 2D
attractive fermions always form biatomic molecules with bound-state
energy

εB '
~2

maF 2
, (1)

where aF is the 2D s-wave scattering length, which is experimentally
tuned by a Fano-Feshbach resonance.
The fermionic single-particle spectrum is given by

Esp(k) =

√(
~2k2

2m
− µ

)2

+ ∆2
0 , (2)

where ∆0 is the energy gap and µ is the chemical potential: µ > 0
corresponds to the BCS regime while µ < 0 corresponds to the BEC
regime. Moreover, in the deep BEC regime µ→ −εB/2.

2V. Makhalov et al. PRL 112, 045301 (2014); M.G. Ries et al., PRL 114, 230401
(2015); I. Boettcher et al., PRL 116, 045303 (2016); K. Fenech et al., PRL 116,
045302 (2016).



A2. 2D equation of state (I)

To study the 2D BCS-BEC crossover we adopt the formalism of
functional integration3. The partition function Z of the uniform system
with fermionic fields ψs(r, τ) at temperature T , in a 2-dimensional
volume L2, and with chemical potential µ reads

Z =

∫
D[ψs , ψ̄s ] exp

{
−S

~

}
, (3)

where (β ≡ 1/(kBT ) with kB Boltzmann’s constant)

S =

∫ ~β

0

dτ

∫
L2

d2r L (4)

is the Euclidean action functional with Lagrangian density

L = ψ̄s

[
~∂τ −

~2

2m
∇2 − µ

]
ψs + g ψ̄↑ ψ̄↓ ψ↓ ψ↑ (5)

where g is the attractive strength (g < 0) of the s-wave coupling.
3N. Nagaosa, Quantum Field Theory in Condensed Matter (Springer, 1999).



A2. 2D equation of state (II)

Through the usual Hubbard-Stratonovich transformation the Lagrangian
density L, quartic in the fermionic fields, can be rewritten as a quadratic
form by introducing the auxiliary complex scalar field ∆(r, τ). In this way
the effective Euclidean Lagrangian density reads

Le = ψ̄s

[
~∂τ −

~2

2m
∇2 − µ

]
ψs + ∆̄ψ↓ ψ↑ + ∆ψ̄↑ ψ̄↓ −

|∆|2

g
. (6)

We investigate the effect of fluctuations of the pairing field ∆(r, t)
around its mean-field value ∆0 which may be taken to be real. For this
reason we set

∆(r, τ) = ∆0 + η(r, τ) , (7)

where η(r, τ) is the complex field which describes pairing fluctuations.



A2. 2D equation of state (III)

In particular, we are interested in the grand potential Ω, given by

Ω = − 1

β
ln (Z) ' − 1

β
ln (ZmfZg ) = Ωmf + Ωg , (8)

where

Zmf =

∫
D[ψs , ψ̄s ] exp

{
−Se(ψs , ψ̄s ,∆0)

~

}
(9)

is the mean-field partition function and

Zg =

∫
D[ψs , ψ̄s ]D[η, η̄] exp

{
−Sg (ψs , ψ̄s , η, η̄,∆0)

~

}
(10)

is the partition function of Gaussian pairing fluctuations.



A2. 2D equation of state (IV)

After functional integration over quadratic fields, one finds that the
mean-field grand potential reads4

Ωmf = −∆2
0

g
L2 +

∑
k

(
~2k2

2m
− µ− Esp(k)− 2

β
ln (1 + e−β Esp(k))

)
(11)

where

Esp(k) =

√(
~2k2

2m
− µ

)2

+ ∆2
0 (12)

is the spectrum of fermionic single-particle excitations.

4A. Altland and B. Simons, Condensed Matter Field Theory (Cambridge Univ.
Press, 2006).



A2. 2D equation of state (V)

The Gaussian grand potential is instead given by

Ωg =
1

2β

∑
Q

ln det(M(Q)) , (13)

where M(Q) is the inverse propagator of Gaussian fluctuations of pairs
and Q = (q, iΩm) is the 4D wavevector with Ωm = 2πm/β the
Matsubara frequencies and q the 3D wavevector.5

The sum over Matsubara frequencies is quite complicated and it does not
give a simple expression. An approximate formula6 is

Ωg '
1

2

∑
q

Ecol(q) +
1

β

∑
q

ln (1− e−β Ecol (q)) , (14)

where
Ecol(q) = ~ ω(q) (15)

is the spectrum of bosonic collective excitations with ω(q) derived from

det(M(q, ω)) = 0 . (16)
5R.B. Diener, R. Sensarma, M. Randeria, PRA 77, 023626 (2008).
6E. Taylor, A. Griffin, N. Fukushima, Y. Ohashi, PRA 74, 063626 (2006).



A2. 2D equation of state (VI)

In our approach (Gaussian pair fluctuation theory7), given the grand
potential

Ω(µ, L2,T ,∆0) = Ωmf (µ, L2,T ,∆0) + Ωg (µ, L2,T ,∆0) , (17)

the energy gap ∆0 is obtained from the (mean-field) gap equation

∂Ωmf (µ, L2,T ,∆0)

∂∆0
= 0 . (18)

The number density n is instead obtained from the number equation

n = − 1

L2

∂Ω(µ, L2,T ,∆0(µ,T ))

∂µ
(19)

taking into account the gap equation, i.e. that ∆0 depends on µ and T :
∆0(µ,T ). Notice that the Nozieres and Schmitt-Rink approach8 is quite
similar but in the number equation it forgets that ∆0 depends on µ.

7H. Hu, X-J. Liu, P.D. Drummond, EPL 74, 574 (2006).
8P. Nozieres and S. Schmitt-Rink, JLTP 59, 195 (1985).



A3. Zero-temperature 2D results (I)

MF EOS

GPF EOS

Bosonic limit
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Scaled pressure P/Pid vs scaled binding energy εB/εF . Notice that
P = −Ω/L2 and Pid is the pressure of the ideal 2D Fermi gas. Filled
squares with error bars: experimental data of Makhalov et al. 9. Solid
line: the regularized Gaussian theory10.

9V. Makhalov et al. PRL 112, 045301 (2014).
10G. Bighin and LS, PRB 93, 014519 (2016). See also L. He, H. Lu, G. Cao, H. Hu

and X.-J. Liu, PRA 92, 023620 (2015).



A3. Zero-temperature 2D results (II)

In the analysis of the two-dimensional attractive Fermi gas one must
remember that, contrary to the 3D case, 2D realistic interatomic
attractive potentials have always a bound state. In particular11, the
binding energy εB > 0 of two fermions can be written in terms of the
positive 2D fermionic scattering length aF as

εB =
4

e2γ

~2

maF 2
, (20)

where γ = 0.577... is the Euler-Mascheroni constant. Moreover, the
attractive (negative) interaction strength g of s-wave pairing is related to
the binding energy εB > 0 of a fermion pair in vacuum by the expression12

− 1

g
=

1

2L2

∑
k

1
~2k2

2m + 1
2εB

. (21)

11C. Mora and Y. Castin, 2003, PRA 67, 053615.
12M. Randeria, J-M. Duan, and L-Y. Shieh, PRL 62, 981 (1989).



A3. Zero-temperature 2D results (III)

At zero temperature, including Gaussian fluctuations, the pressure is

P = − Ω

L2
=

mL2

2π~2
(µ+

1

2
εB)2 + Pg (µ, L2,T = 0) , (22)

with

Pg (µ, L2,T = 0) = −1

2

∑
q

Ecol(q) . (23)

In the full 2D BCS-BEC crossover, from the regularized version of Eq.
(13), we obtain numerically the zero-temperature pressure13

Notice that the energy of bosonic collective excitations becomes

Ecol(q) =

√
~2q2

2m

(
λ
~2q2

2m
+ 2mc2

s

)
(24)

in the deep BEC regime, with λ = 1/4 and mc2
s = µ+ εB/2.

13G. Bighin and LS, PRB 93, 014519 (2016). See also L. He, H. Lu, G. Cao, H. Hu
and X.-J. Liu, PRA 92, 023620 (2015).



A3. Zero-temperature 2D results (IV)

In the deep BEC regime of the 2D BCS-BEC crossover, where the
chemical potential µ becomes strongly negative, the corresponding
regularized pressure (dimensional regularization 14) reads

P =
m

64π~2
(µ+

1

2
εB)2 ln

(
εB

2(µ+ 1
2εB)

)
. (25)

This is exactly the Popov equation of state of 2D Bose gas with chemical
potential µB = 2(µ+ εB/2), mass mB = 2m. In this way we have
identified the two-dimensional scattering length aB of composite boson as

aB = 1
21/2e1/4 aF . (26)

The value aB/aF = 1/(21/2e1/4) ' 0.551 is in full agreement with
aB/aF = 0.55(4) obtained by Monte Carlo calculations15.

14LS and F. Toigo, PRA 91, 011604(R) (2015); LS, PRL 118, 130402 (2017).
15G. Bertaina and S. Giorgini, PRL 106, 110403 (2011).



A4. Finite-temperature 2D results (I)

We are now interested on the temperature dependence of superfluidy
density ns(T ) of the system.
At the Gaussian level ns(T ) depends only on fermionic single-particle
excitations Esp(k).16 Beyond the Gaussian level also bosonic collective
excitations Ecol(q) contribute.17

Thus, we assume the following Landau-type formula for the superfluid
density18

ns(T ) = n−β
∫

d2k

(2π)2
k2 eβEsp(k)

(eβEsp(k) + 1)2
− β

2

∫
d2q

(2π)2
q2 eβEcol (q)

(eβEcol (q) − 1)2
.

(27)

16E. Babaev and H.K. Kleinert, PRB 59, 12083 (1999).
17L. Benfatto, A. Toschi, and S. Caprara, PRB 69, 184510 (2004).
18G. Bighin and LS, PRB 93, 014519 (2016).



A4. Finite-temperature 2D results (IV)

The analysis of Kosterlitz and Thouless19 applied to 2D superfluids
shows that:

As the temperature T increases vortices start to appear in
vortex-antivortex pairs.

The pairs are bound at low temperature until at the critical
temperature Tc = TBKT an unbinding transition occurs above which
a proliferation of free vortices and antivortices is predicted.

The superfluid density ns(T ) is renormalized by the presence of
vortex-antivortex pairs.

The renormalized superfluid density ns,R(T ) decreases by increasing
the temperature T and jumps to zero at Tc = TBKT .

19J.M. Kosterlitz and D.J. Thouless, J. Phys. C 6, 1181 (1973).



A4. Finite-temperature 2D results (V)

We have seen that the renormalized superfluid density ns,R(T ) jumps to
zero at a critical temperature TBKT .
Moreover, one finds the Nelson-Kosterlitz condition20

kBTBKT =
~2π

8m
ns,R(T−BKT ) . (28)

Often the following Nelson-Kosterlitz criterion is adopted

kBTBKT =
~2π

8m
ns(TBKT ) , (29)

with ns(T ) instead of ns,R(T ). In this way one gets an approximated21

TBKT without the effort of calculating the renormalized superfluid density
ns,R(T ).

20D.R. Nelson and J.M. Kosterlitz, Phys Rev. Lett. 39, 1201 (1977).
21An improved approach based on the RG equations of Kosterlitz and Thouless can

be found in G. Bighin and LS, Sci. Rep. 7, 45702 (2017).



A4. Finite-temperature 2D results (VI)

Our theoretical predictions22 for the Berezinskii-Kosterlitz-Thouless
critical temperature TBKT compared to experimental observation23 (filled
circles with error bars).

22G. Bighin and LS, PRB 93, 014519 (2016).
23P.A. Murthy et al., PRL 115, 010401 (2015).



B1. Bose gas on the surface of a sphere (I)

Recently, Bose-Einstein condensates (BECs) made of ultracold
alkali-metal atoms under microgravity have been achieved
i) dropping the BEC down a 146-meter-long drop chamber24

ii) rocketing the BEC and conducting experiments during in-space flight25

In addition, in 2018 a NASA’s Cold Atom Laboratory (CAL) was
successfully launched aboard an Orbital ATK Cygnus spacecraft.26 In the
near future, CAL will operate in the microgravity environment of the
International Space Station.

24T. van Zoest, et al., Science 328, 1540 (2010)
25D. Becker et al., Nature 562, 391 (2018).
26See the webpage https://coldatomlab.jpl.nasa.gov



B1. Bose gas on the surface of a sphere (II)

Our theoretical study of a Bose gas on the surface of a sphere is triggered
by the experimental possibility to confine the atoms on a bubble trap,27

which needs microgravity conditions.28

The energy of a particle of mass m moving on the surface of a sphere of
radius R is quantized according to the formula

εl =
~2

2mR2
l(l + 1) , (30)

where ~ is the reduced Planck constant and l = 0, 1, 2, ... is the integer
quantum number of the angular momentum. This energy level has the
degeneracy 2l + 1 due to the magnetic quantum number
ml = −l ,−l + 1, ..., l − 1, l of the third component of the angular
momentum.

27B. M. Garraway and H. Perrin, J. Phys. B 49, 172001 (2016).
28E.R. Elliott et al., npj Microgravity 4, 16 (2018).



B2. Non-interacting bosons: critical temperature (I)

In quantum statistical mechanics the total number N of non-interacting
bosons moving on the surface of a sphere and at equilibrium with a
thermal bath of absolute temperature T is given by

N =
+∞∑
l=0

2l + 1

e(εl−µ)/(kBT ) − 1
, (31)

where kB is the Boltzmann constant and µ is the chemical potential. In
the Bose-condensed phase, we can set29 µ = 0 and

N = N0 +
+∞∑
l=1

2l + 1

eεl/(kBT ) − 1
, (32)

where N0 is the number of bosons in the lowest single-particle energy
state, i.e. the number of bosons in the Bose-Einstein condensate (BEC).

29For details, see Martina Russo, BSc thesis, Supervisor: LS, Univ. of Padova
(2019).



B2. Non-interacting bosons: critical temperature (II)

Within the semiclassical approximation, where
∑+∞

l=1 →
∫ +∞

1
dl , the

previous equation becomes

n = n0 +
mkBT

2π~2

(
~2

mR2kBT
− ln

(
e~

2/(mR2kBT ) − 1
))

, (33)

where n = N/(4πR2) is the 2D number density and n0 = N0/(4πR2) is
the 2D condensate density.
At the critical temperature TBEC , where n0 = 0, one then finds30

kBTBEC =
2π~2

m n
~2

mR2kBTBEC
− ln

(
e~2/(mR2kBTBEC ) − 1

) . (34)

As expected, in the limit R → +∞ one gets TBEC → 0, in agreement
with the Mermin-Wagner theorem.31 However, for any finite value of R
the critical temperature TBEC is larger than zero.

30A. Tononi and LS, Phys. Rev. Lett. 123, 160403 (2019).
31N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).



B2. Non-interacting bosons: critical temperature (III)

Top panel: TBEC vs nR2, with ζ = ~2n/m. Solid line: semiclassical
approximation (solid line); dashed line: numerical evaluation of the sum.
Bottom panel: condensate fraction n0/n vs temperature T/TBEC .



B3. Interacting bosons: phase diagram (I)

We now consider a system of interacting bosons on the surface of a
sphere of radius R and contact interaction of strength g .
Within the formalism of functional integration, the grand canonical
partition function reads

Z =

∫
D[ψ̄, ψ] e−

S[ψ̄,ψ]
~ , (35)

where, by using β = 1/(kBT ) with T the absolute temperature,

S [ψ̄, ψ] =

∫ β~

0

dτ

∫ 2π

0

dϕ

∫ π

0

sin(θ) dθ R2 L(ψ̄, ψ) (36)

is the Euclidean action and, with L̂ is the angular momentum operator,

L = ψ̄(θ, ϕ, τ)

(
~∂τ +

L̂2

2mR2
− µ

)
ψ(θ, ϕ, τ) +

g

2
|ψ(θ, ϕ, τ)|4 (37)

is the Euclidean Lagrangian of the bosonic field ψ(θ, φ, τ), which depends
on the spherical angles θ and φ and on the imaginary time τ .



B3. Interacting bosons: phase diagram (II)

The condensate phase is introduced with the Bogoliubov shift

ψ(θ, ϕ, τ) = ψ0 + η(θ, ϕ, τ), (38)

where the real field configuration ψ0 describes the condensate
component. By substituting this field parametrization and keeping only
second order terms in the field η we rewrite the Lagrangian as

L = L0 + Lg (39)

with L0 = −µψ0
2 + gψ0

4/2.
We use the following decomposition of the complex fluctuation field
η(θ, ϕ, τ)

η(θ, ϕ, τ) =
∑
ωn

∞∑
l=1

l∑
ml=−l

e−iωnτ

R
Y l
ml

(θ, ϕ) η(l ,ml , ωn), (40)

where ωn = 2πn/(~β) are the Matsubara frequencies, and we introduce
the orthonormal basis of the spherical harmonics Y l

ml
(θ, φ).



B3. Interacting bosons: phase diagram (III)

After some analytical calculations, at the Gaussian level the grand
potential

Ω = − 1

β
ln(Z) ' − 1

β
(ln(Z0) + ln(Zg )) (41)

is given by

Ω(µ, ψ0
2) = 4πR2

(
− µψ0

2 + gψ0
4/2
)

+
1

2

∞∑
l=1

l∑
ml=−l

El(µ, ψ0
2)

+
1

β

∞∑
l=1

l∑
ml=−l

ln(1− e−βEl (µ,ψ0
2)) (42)

where
El(µ, ψ0

2) =
√

(εl − µ+ 2gψ0
2)2 − g2ψ0

4 (43)

is the excitation spectrum of the interacting system, with
εl = ~2l(l + 1)/(2mR2) the single-particle energy.



B3. Interacting bosons: phase diagram (IV)

The condensate number density n0 of the system is given by

n0 = ψ0
2 , (44)

where we fix the value of the order parameter ψ0 with the condition

∂Ω(µ, ψ0
2)

∂ψ0
= 0 . (45)

Notice that from this formula we get n0 as a function of µ.
The total number density of the system is instead given by

n = − 1

4πR2

∂Ω(µ, n0(µ))

∂µ
. (46)

At the lowest order of a perturbative scheme,32 where ψ0 is obtained

from the mean-field equation ∂Ω0(µ,ψ0
2)

∂ψ0
= 0, we get ψ0 '

√
µ/g and

El ' EB
l =

√
εl(εl + 2µ) . (47)

32H. Kleinert, S. Schmidt, and A. Pelster, Phys. Rev. Lett. 93, 160402 (2004).



B3. Interacting bosons: phase diagram (V)

Within this perturbative scheme33 from the previous equations we
obtain34 the BEC critical temperature

kBTBEC =
2π~2n

m − gn
2

~2

2mR2kBTBEC

(
1 +

√
1 + 2gmnR2

~2

)
− ln

(
e

~2

mR2kBTBEC

√
1+ 2gmnR2

~2 − 1

) ,

(48)
where the condensate density n0 is zero.
Moreover, adopting the Landau formula for the normal density, we
calculate the superfluid density ns(T ) as

ns = n − 1

kBT

∫ +∞

1

dl (2l + 1)

4πR2

~2(l2 + l)

2mR2

eE
B
l /(kBT )

(eE
B
l /(kBT ) − 1)2

, (49)

and applying the Kosterlitz-Nelson criterion we evaluate numerically the
BKT critical temperature TBKT .

33H. Kleinert, S. Schmidt, and A. Pelster Phys. Rev. Lett. 93, 160402 (2004).
34A. Tononi and LS, Phys. Rev. Lett. 123, 160403 (2019).



B3. Interacting bosons: phase diagram (VI)

Phase diagram of the bosonic system for nR2 = 102 (upper panel),
nR2 = 104 (middle panel), nR2 = 105 (lower panel). Here ζ = ~2n/m.



Conclusions

We have found that in the 2D BCS-BEC crossover, after
regularization35 beyond-mean-field Gaussian fluctuations and
quantized vortices give remarkable effects for superfluid fermions:
– logarithmic behavior of the equation of state in the deep BEC
regime
– good agreement with (quasi) zero-temperature experimental data
– bare ns and renormalized ns,R superfluid density
– Berezinskii-Kosterlitz-Thouless critical temperature TBKT

Triggered by recent achievements of space-based BECs under
microgravity and bubble traps, which confine atoms on a thin shell,
we have investigated BEC on the surface of a sphere finding:
– BEC critical temperature for non-interacting bosons
– BEC and BKT critical temperatures for interacting bosons

Finite-range effects of the inter-atomic potential could be included
within an effective-field-theory (EFT) approach.36

35For a recent comprehensive review see LS and F. Toigo, Phys. Rep. 640, 1 (2016).
36EFT for 2D dilute bosons: LS, PRL 118, 130402 (2017).
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