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Atomic BEC in optical lattices (1)

In 1995 Eric Cornell and Carl Wieman, Wolfgang Ketterle, and Randy
Hulet achieved Bose-Einstein condensation (BEC) cooling very dilute
gases of Rubidium (]7Rb), Sodium (?*Na), and Lithium (”Li) atoms,

respectively.

The BEC critical temperature is about T, ~ 100 nanoKelvin. The gas,
made of dilute and ultracold neutral alkali-metal atoms, is in a
meta-stable state which can survive for minutes.



Atomic BEC in optical lattices (Il)

In 2002 the experimental group of Immanuel Bloch obtained with
counter-propagating laser beams inside an optical cavity, stationary
optical lattice which can trap ultracold atoms.
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Cold atomic gas

The resulting optical potential U(r) = —(d - E(r)) can trap neutral atoms
with electric dipole moment d in the minima of the optical lattice.



Atomic BEC in optical lattices (I1l)

Now the study of neutral atoms trapped with light is a very hot topic of
research.

Changing the intensity and shape of the optical lattice, it is now possible
to trap atoms in very different configurations. One can have many atoms
per site bit also one atom per site.



Gross-Pitaevskii equation (1)

Static and dynamical properties of a pure Bose-Einstein condensate made
of dilute and ultracold atoms are very well described by the
Gross-Pitaevskii equation?

A h? as
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where U(r) is the external trapping potential and as is the s-wave
scattering length of the inter-atomic potential.

Here 9 (r, t) is the wavefunction of the Bose-Einstein condensate
normalized to one, i.e.
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and such that n(r) = N|i(r, t)|? is the local number density of the N
condensed atoms.

1E.P. Gross, Nuovo Cimento 20, 454 (1961); L.P. Pitaevskii, Sov. Phys. JETP. 13,
451 (1961).



Gross-Pitaevskii equation (I1)

The Gross-Pitaevskii equation, that is a nonlinear Schrodinger equation
with cubic nonlinearity, can be deduced from the many-body quantum
Hamiltonian of N identical spinless particles.

In the case of a pure Bose-Einstein condensate one assumes all bosons in
the same time-dependent single-particle orbital (Hartree approximation)

N
W(I’l7 e PN, t) = H/z/)(r,-, f) . (3)

Moreover, in the case of dilute gases we assumes a very simple
inter-atomic potential (Fermi pseudo-potential) that

V(r—+) ~gpd®(r—+) (4)

with 6C)(r) the Dirac delta function and

g = [ V(1) o

with as the s-wave scatering length as of the inter-atomic potential
(Born approximation).
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Dimensional reduction: from 3D to 1D ()

We have seen that the Gross-Pitaevskii (GP) equation

.0 h?
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ot 2m
is the Hartree equation for bosons, all in the same single-particle orbital
Y(r, t). It is also the Euler-Lagrange equation of the following GP action
functional

2

gaolu(r, 1)) u(r.t).
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Let us now consider a very strong harmonic confinement of frequency w
along x and y and a generic confinement U/(z) along z, namely
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Dimensional reduction: from 3D to 1D (II)

On the basis of the chosen external confinement, we adopt the ansatz

1 X2 +y2
Y(r. t) = f(z, t)meXP (M) )

where f(z,t) is the axial wave function and a;, = \/i/(mw ) is the
characteristic length of the transverse harmonic confinement.

By inserting Eq. (9) into the GP action (7) and integrating along x and
v, the resulting effective action functional depends only on the field
f(z,t).

One easily finds that the Euler-Lagrange equation of the axial
wavefunction f(z, t) reads

(9)
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is the effective one-dimensional interaction strength and the additive
constant fuww | has been omitted because it does not affect the dynamics.



1D bright solitons (1)

In the absence of axial confinement, i.e. U/(z) =0, the 1D GPE becomes

n? 92
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This is a 1D nonlinear Schrodinger equation with cubic nonlinearity.
In 1972 Vladimir Zakharov and Aleksei Shabat? found that this equation
admits solitonic solutions, such that

f(z,t) = ¢(z — vt) el *f2=m)t/h (13)

where v is the arbitrary velocity of propagation of the solution, which has
a shape-invariant axial density profile:

n(z,t) = N|f(z,t)]> = N|o(z — vt)|* . (14)

2V.E. Zakharov and A.B. Shabat, Sov. Phys. JETP 34, 62 (1972).



1D bright solitons (II)

Setting ( = z — vt, the 1D stationary GP equation

{hz d?
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with v < 0 (self-focusing), admits the bright-soliton solution
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with Sech[x] = === and
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1D bright solitons (III)

Probability density [¢(¢)|? of the bright soliton for three values of the
nonlinear strength v. We set h = m = 1.



Quasi-1D bright solitons (1)

The 1D GPE has been derived from the 3D GPE assuming a transverse
Gaussian with a constant transverse width a .

A more general assumption3, is based on a space-time dependent
transverse width
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where f(x, t) is the axial wave function and o(x, t) is the space-time
dependent transverse width.

Inserting this ansatz in the 3D GP action functional, after neglecting the
spatial derivatives of o(x, t), the Euler-Lagrange equations of f(x, t) and
o(x, t) give the 1D nonpolynomial Schrodinger equation (1D NPSE)
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3LS, A. Parola, L. Reatto, Phys. Rev. A 65, 043614 (2002).



Quasi-1D bright solitons (II)

In the weak-coupling regime |as||f|*> < 1 one finds o ~ a, and the 1D
NPSE becomes the familiar 1D GPE.

However, contrary to the 1D GPE bright soliton, the 1D NPSE bright
soliton does not exist anymore, collapsing at*

as(N—-1) 2
=——) =—2. 20
= (202 -3 (20)
This analytical result is in extremely good agreement with the numerical

solution of the 3D GPE: ~. = —0.67.

Main message: a real bright soliton will collapse when the absolute value
of the interaction strength is sufficiently large!

4LS, A. Parola, L. Reatto, Phys. Rev. A 66, 043603 (2002); Phys. Rev. Lett. 91,
080405 (2003).



Bright solitons in 2002 experiments (1)

In 2002 there were two relevant experiments about bright solitons with
BECs made of ’Li atoms.
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Both experiments used the technique of Fano-Feschbach resonance to
tune the s-wave scattering length as of the inter-atomic potential by
means of an external constant magnetic field. In the figure: scattering
length a5 for 7Li in state |F = 1, mg = 1).



Bright solitons in 2002 experiments (I1)

At ENS of Paris, Khaykovich et al. [Science 296, 1290 (2002)] reported
the production of bright solitons in an ultracold “Li gas. The interaction
was tuned with a Feshbach resonance from repulsive to attractive before
release in a one-dimensional optical waveguide. Propagation of the
soliton without dispersion over a macroscopic distance of 1.1 millimeter
was observed.

At Rice University, Strecker et al. [Nature 417, 150 (2002)] reported the
formation of a train of bright solitons of ”Li atoms in a
quasi-one-dimensional optical trap. The solitons were set in motion by
offsetting the optical potential, and were observed to propagate in the
potential for many oscillatory cycles without spreading.®

5For collective modes of bright-soliton trains: J.H.V. Nguyen, D. Luo, R.G. Hulet,
Science 356, 422 (2017).



Bright solitons in optical lattices (1)

In 2007 we analyzed quasi-1D solitons in the cigar-shaped trap equipped
with a periodic potential, which can be created as an optical lattice
(OL)®. The energy-per-atom E of the self-attractive BEC are given by

E = /d3r¢*(r)[— %V2 + %(x2 +y3)) +U(z2)

+ wg \d»(r)|2] P(r), (21)

in adimensional form, with g = 2(N — 1)as;/a; < 0. Here, the OL
potential acting along axis z is

U(z) = —Vycos (2k.z) (22)

with lattice spacing d; = m/k; and recoil energy E, = 72h?/(2md?).
In 2025 this specific problem has been experimentally investigated at
Strathclyde University.”

6LS, A. Cetoli, B. A. Malomed, and F. Toigo, Phys. Rev. A 75, 033622 (2007).
7R. Cruickshank, F. Lorenzi, A. La Rooij, E. Kerr, T. Hilker, S. Kuhr, LS, E. Haller,
e-preprint arXiv:2504.11046, to appear in Phys. Rev. Lett.



Bright solitons in optical lattices (II)
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The axial density profile, |f(z)|?, of the bright soliton in OL periodic
potential 2/(z), Eq. (22), with k. = 1 and four different values of V4.
The self-attraction strength is fixed at g = —0.5. Numerical solution of
the 1D NPSE.2

8|S, A. Cetoli, B. A. Malomed, and F. Toigo, Phys. Rev. A 75, 033622 (2007).



Bright solitons in optical lattices (llI)

To study lattice solitons in an approximate analytical form, one can use
the Gaussian ansatz

1 (x2+y?) z2
Y(r) = w312 P {%2 TR (23)

where o and 7 are, respectively, the transverse width and axial length of
the localized pattern. Inserting this ansatz into Eq. (21) one obtains

1/1 1 g 1
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2<2n2+02+0>+2 5 o2n oexp( Ln) (24)



Bright solitons in optical lattices (V)

Aiming to predict the ground state in the framework of the above
approximation, we look for values of o and 7 that minimize energy E [as
given by Eq. (24)], using equations 9E /Jo = OE /On = 0. This way, we
derive coupled equations,

1 g 1 2 2.2
T eree " 4Vokinexp (=kii°) =0, (25)
1 g 1
= _° =0. 26
3 + o+ 2m)172 o3 (26)

Quite remarkably, we can get ¢ as a function of 7, i.e.

1/4
ot = (1+ Gy @)

and also E(n) = E(n,0(n)).



Bright solitons in optical lattices (V)
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(a) Energy E(n) for a Gaussian wave packet with Vo = 1.1 E,, as = —6.2 ao,
d. =2 pum. Single-site (SS) and multi-site (MS) solitons are stable at minima
Mss and Mys with barriers Bss and Bus. (b) Sketch of experimental setup.
(c) Stable regions of SS and MS solitons for varying parameters g and Vo, with
N = 1800, wi =27 x 30Hz, d. = 3.2 um. No solitons exist in dark blue
regions. (d) Stable regions for varying di, same parameters as (c) with
constant Vo =1.3E,. °

9R. Cruickshank et al., e-preprint arXiv:2504.11046, to appear in Phys. Rev. Lett.




Bright solitons in optical lattices (VI)
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Measured density distribution changing scattering length as. There are 4
regimes (from left to right): (i) delocalization due to the collapse for strong
attraction (ii) a bright soliton for moderate attraction, (iii) free expansion near
zero interaction, and (iv) (self-trapping) localization for strong repulsion.
These regimes arise from the interplay between the effective potential barriers
Bss and Bus. Here di = 3.2(2) um, Vo = 1.3(1) E;, w1 = 27 x 40(1) Hz,

N ~ 1800. *°

10R. Cruickshank et al., e-preprint arXiv:2504.11046, to appear in Phys. Rev. Lett.




Conclusions

@ Periodic potentials are now easily created with laser beams (optical
lattices).

@ Ultracold atoms are an ideal platform to study many-body problems
on a lattice.

@ Atomic BEC are very useful to study coherent nonlinear phenomena,
such as solitons (bright and dark) and quantized vortices.

@ In these atomic systems there is an excellent synergy between theory
and experiments.
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