
Interaction between gravitational waves and
trapped Bose-Einstein condensates

Luca Salasnich

Dipartimento di Fisica e Astronomia “Galileo Galilei” and QTech, Università di Padova
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Introduction (I)

Nowadays gravitational waves (GWs) are detected with very long
interferometers, such as LIGO and Virgo.1

In order to develop more compact tools to investigate multimessanger
astronomy, it has been suggested2 that phonons (sound waves) in
Bose-Einstein condensates (BECs) can be induced by GWs.

1B. P. Abbott et al., Phys. Rev. Lett. 116, 061102 (2016).
2C. Sab́ın, D.E. Bruschi, M. Ahmadi, and I. Fuentes, New J. Phys. 16, 085003

(2014); M. P. G. Robbins, N. Afshordi, A.O. Jamison, and R. B. Mann, Class.
Quantum Grav. 39, 175009 (2022).



Introduction (II)

Here we analyze some consequences of a “quantum-information oriented”
proposal3 of Ralf Schützhold (TU Dresden),

who studied the quantum many-body wavefunction of a BEC under the
effect of a GW.

3R. Schützhold, Phys. Rev. D 98, 105019 (2018).



Gravitational waves (I)

GWs are perturbation of the metric gµν of the spacetime and the
equations which describe them are obtained starting from the Einstein
field equations4

Rµν −
1

2
R gµν =

8πG

c4
Tµν (1)

We impose the weak field condition

gµν = ηµν + hµν (2)

where

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (3)

is the flat Minkowski metric and |hµν | � 1.

4R.M. Wald, General Relativity (Chicago Univ. Press, 1984).



Gravitational waves (II)

Proceeding with the calculations one gets the following result(
1

c2
∂2
t −∇2

)
hµν =

16πG

c4
Tµν (4)

which are indeed the GW equations, with ∇2 = ∂2
x + ∂2

y + ∂2
z .

Eq. (5) are not easily solvable analytically, primarily due to the presence
of the energy-momentum tensor Tµν . Therefore, let us consider the
simplest case where Tµν = 0, i.e.(

1

c2
∂2
t −∇2

)
hµν = 0 (5)

In this case the GW solutions are plane waves.



Gravitational waves (III)

From now on, we will only consider gravitational waves hµν propagating
along the z axis, and such that

hµν =


0 0 0 0
0 h 0 0
0 0 −h 0
0 0 0 0

 (6)

which induce the following modification of the spacetime interval

ds2 = gµνdx
µdxν = −c2dt2 + (1 + h)dx2 + (1− h)dy2 + dz2 (7)

where h depends only on z and t, i.e. h = h(z , t).



Bose-Einstein condensates (I)

Let us now consider non-relativistic identical particles of mass m in flat
spacetime. The quantum-field-theory Hamiltonian is given by5

Ĥflat =

∫
d3r ψ̂+(r, t)

[
− }2

2m
∇2 + U(r)

]
ψ̂(r, t)

+
1

2

∫
d3r d3r′ ψ̂+(r, t)ψ̂+(r′, t)V (r − r′)ψ̂(r′, t)ψ̂(r, t) (8)

where ψ̂(r, t) is the quantum field operator, U(r) is the trapping
potential, and V (r − r′) the inter-particle potential of the interaction
between particles. Here r = (x , y , z).
In order to describe a bosonic field it is necessary to impose the following
equal-time commutation rules[

ψ̂(r, t), ψ̂+(r′, t)
]

= δ(r − r′) (9)[
ψ̂(r, t), ψ̂(r′, t)

]
=

[
ψ̂+(r, t), ψ̂+(r′, t)

]
= 0 (10)

5L. Salasnich, Quantum Physics of Light and Matter (Springer, 2017).



Bose-Einstein condensates (II)

When bosonic particles are cooled below the critical temperature Tc ,
they lose their individuality and form a “single entity” where all particles
occupy the same state.

This phenomenon is known as a Bose-Einstein condensation (BEC). In
1995 for the first time BEC was achieved cooling gases of 87Rb and 23Na
with critical temperature Tc ' 100 nanoKelvin.



Bose-Einstein condensates (III)

In the case N � 1, with N number of particles, and T � Tc , one can
use the many-body coherent state |Ψcs〉, such that

ψ̂(r, t)|Ψcs〉 = ψ(r, t)|Ψcs〉 (11)

where ψ(r, t) is the macroscopic complex wavefunction of the
Bose-Einstein condensate (BEC) normalized to N, i.e.∫

d3r |ψ(r, t)|2 = N (12)

In addition, for ultracold and dilute alkali-metal atoms one can safely
impose a binary contact interaction

V (r − r′) = γ δ(r − r′) (13)

with γ = 4π~2as/m where as is the s-wave scattering length.



Bose-Einstein condensates (IV)

In this way one obtains the following Hamiltonian:

Ĥflat =

∫
d3r

{
ψ̂+(r, t)

[
− }2

2m
∇2 + U(r)

]
ψ̂(r, t) +

γ

2
ψ̂+(r, t)2ψ̂(r, t)2

}
(14)

from which, by using the coherent states, the Gross-Pitaevskii equation
(GPE) is obtained

i~ ∂tψ(r, t) =

[
− ~2

2m
∇2 + U(r) + γ|ψ(r, t)|2

]
ψ(r, t) (15)

This time-dependent nonlinear Schrödinger equation describes quite
accurately the experiments involving pure BECs made of alkali-metal
atoms.



BECs in curved spacetime (I)

As discussed by several authors6, the GPE of a BEC in curved spacetime
is given by

i} ∂tψ(r, t) =

[
− }2

2m
∇2

g + U(r) + γ|ψ(r, t)|2
]
ψ(r, t) (16)

where ∇2
g is the quite complicated Laplacian operator in curved

spacetime. Imposing the arrival of a GW propagating along the z axis of
the BEC, one gets

i~ ∂tψ(r, t) = − }2

2m

[
∇2 + h(z , t)

(
∂2
x − ∂2

y

)]
ψ(r, t)

+
[
U(r) + γ|ψ(r, t)|2

]
ψ(r, t) , (17)

with ∇2 = ∂2
x + ∂2

y + ∂2
z the Laplacian operator in flat spacetime.

6R. Schützhold, Phys. Rev. D 98, 105019 (2018); A. Roitberg, J. Phys.: Conf.
Ser. 1730, 012017 (2021).



BECs in curved spacetime (II)

The quantum-field-theory Hamiltonian of the BEC interacting with a
gravitational wave propagating along the z-axis can be expressed as
follows

Ĥ = Ĥflat + Ĥint (18)

where

Ĥflat =

∫
d3r

{
ψ̂+(r, t)

[
− }2

2m
∇2 + U(r)

]
ψ̂(r, t) +

γ

2
ψ̂+(r, t)2ψ̂(r, t)2

}
(19)

is the Hamiltonian of the bosonic quantum field in flat spacetime, while

Ĥint =

∫
ψ̂+(r, t)

(
− }2

2m
h(z , t)(∂2

x − ∂2
y )

)
ψ̂(r, t) d3r (20)

takes into account the interaction with the GW.



Quantum fidelity (I)

At this point, we introduce the many-body coherent state |Ψcs〉 which
satisfies the following eigenvalue equation

ψ̂(r, t)|Ψcs〉 = ψgs(r, t)|Ψcs〉 =
√
N φgs(r) e−

i
~µt |Ψcs〉 (21)

where ψgs(r, t) is normalized to N, while φgs(r), normalized to one, is the
ground-state wavefunction of the BEC in flat spacetime with chemical
potential µ. Explicitly, φgs(r) satisfies the stationary GPE equation in flat
spacetime [

− }2

2m
∇2 + U(r) + γN|φgs(r)|2

]
φgs(r) = µφgs(r) (22)

with φgs(r) normalized to one, i.e.∫
d3r |φgs(r)|2 = 1 (23)



Quantum fidelity (II)

We can now define the time evolution operator Ûint(t) associated with
the interaction of the gravitational wave

Ûint(t) = e−
i
}
∫ t

0
Ĥint(t′) dt′ (24)

where
|Ψcs,int〉 = Ûint(t)|Ψcs〉 (25)

is the interacting many-body quantum state at time t.
We also introduce the fidelity amplitude F(t), a complex number which
measures how much the state remains unchanged over time:7

F(t) = 〈Ψcs |Ψcs,int〉 = 〈Ψcs |Ûint(t)|Ψcs〉 (26)

Clearly, |F(t)| ∈ [0, 1] where F(t) = 1 means no change, while F(t) = 0
signals a complete change, i.e. zero fidelity.

7F (t) = |F(t)|2 is the more familiar fidelity, a non negative real number.



Quantum fidelity (III)

By expanding the Uint(t) in a Taylor series with respect to Nh, we obtain
the following result:

F(t) = 1− i Nξ(t) +O(N2h2) (27)

with the N-times enhanced phase shift

Nξ(t) = N
}

2m

∫ t

0

dt ′
∫

d3r h(z , t ′)φ∗gs(r)(∂2
y − ∂2

x )φgs(r) (28)

The proposal8 of Schützhold is that in the future it will be possible to
measure the phase shift Nξ(t) by using BECs made of alkali-metal atoms.

8R. Schützhold, Phys. Rev. D 98, 105019 (2018).



Phase shift for BEC in harmonic trap (I)

Here we calculate Nξ(t) in the case of a BEC trapped by a harmonic
potential

U(r) =
1

2
m(ω2

xx
2 + ω2

yy
2 + ω2

z z
2) (29)

By using the technique of Feshbach resonances9 it is now possible10 to
vary the interaction strength between the particles in a condensate,
changing the scattering length as even to the point of making it zero.
For non-interacting bosons in the harmonically trapped BEC, the
ground-state wavefunction is given by

φgs(r) =
1

(π3σ2
xσ

2
yσ

2
z )

1
4

exp

[
−
(

x2

2σ2
x

+
y2

2σ2
y

+
z2

2σ2
z

)]
(30)

where

σi =

√
}

mωi
with i = x , y , z (31)

9H. Feshbach, Ann. Phys. 5, 357 (1958)
10C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Rev. Mod. Phys. 82, 1225

(2010).



Phase shift for BEC in harmonic trap (II)

The corresponding phase shift reads

Nξ(t) = N
}

2m

σy − σx√
πσxσyσz

∫ t

0

dt ′
∫ +∞

−∞
dz h(z , t ′) e

− z2

σ2
z (32)

Note that if σx = σy the GW does not produce observable effects on the
BEC.
By using the simplest possible expression for the GW, namely

h(t, z) = h0 cos(kgz − ωg t) (33)

we find

Nξ(t) =
h0

2

√
}
m

(√
ωx −

√
ωy

)
e−

}
4mc2

ω2
g
ωz sin(ωg t) (34)

This equation gives the phase shift, due to a GW, on a non-interacting
BEC subjected to an anisotropic harmonic trapping potential. Its
maximum (amplitude), given by

max[Nξ(t)] =
h0

2

√
}
m

(√
ωx −

√
ωy

)
e−

}
4mc2

ω2
g
ωz (35)

is obtained when sin(ωg t) = 1, i.e. for instance when ωg t = π/2. Notice
that only for

ωg

ωz
= O(1017) the damping term plays a role.



Phase shift for BEC in harmonic trap (III)

Phase shift Nξ(t) at ωg t = π/2 as a function of the confinement
frequencies νx = ωx/(2π) and νy = ωy/(2π) in the xy plane. BEC of
non-interacting 87Rb atoms, with fixed values of ωz = 2π × 150Hz,
h0 = 10−20 and N = 107.



Phase shift for BEC in harmonic trap (IV)

It is possible to make use a Gaussian variational method11 to evaluate
also the case of an interacting BEC. The Gaussian trial function is the
same of Eq. (30) but the σi are variational parameters. In the strongly
interacting regime, the σ∗i that minimize the ground-state energy are

σ∗x =

(
Γ} 3

5ωyωz

mω4
x

) 1
5

σ∗y =

(
Γ} 3

5ωzωx

mω4
y

) 1
5

σ∗z =

(
Γ} 3

5ωxωy

mω4
z

) 1
5

(36)
where Γ = γ N

(2π)
3
2

. Then the procedure for calculating Nξ(t) leads to

Nξ(t) = N
h0

2

(
} 11

5

m2
√

Γωz

) 2
5

e
−
ω2
g

4c2

(
Γ}

3
5 ωxωy

mω4
z

) 2
5
(ω4

x

ωy

) 1
5

−

(
ω4
y

ωx

) 1
5

 sin(ωg t)

(37)

11L. Salasnich, Int. J. Mod. Phys B 14, 1 (2000).



Phase shift for BEC in harmonic trap (V)

Phase shift Nξ(t) at ωg t = π/2 for a BEC of interacting 87Rb atoms,
plotted as a function of the confinement frequency νy = ωy/(2π) along
the y -axis. Fixed parameters: νz = 150Hz, νx = 200Hz, h0 = 10−20,
aS = 100aB , and N = 107. aB is the Bohr radius.



Conclusions

We have discussed the interaction Hamiltonian between a
gravitational wave and a Bose-Einstein condenstate.

We have computed the fidelity amplitude at first order with respect
to Nh, where N is the number of atoms in the Bose-Einstein
condensate and h is a scalar component of gravitational wave.

We have shown an enhancement for the phase shift of the fidelity
amplitude that is proportional to the number N of condensed atoms.

We have explicitly evaluated the magnitude of the phase shift in the
case of Bose-Einstein condensates confined by an anisotropic
harmonic potential.

The experimental detection of the phase shift is still a puzzling
problem under discussion.

Take-home message: at fixed number N of atoms, tuning the s-wave
scattering length as of the inter-atomic interaction one can increase
of several order of magnitude the many-body phase Nξ(t) which
signals the arrival of a gravitational wave.
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