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BECs with negative scattering length

Many experiments have been devoted to the study of dilute and ultracold
Bose-Einstein condensates (BECs) with positive s-wave scattering length

a3>0, (1)

which implies an effective repulsion between atoms (87Rb, 23Na). There are
instead few experiments with negative s-wave scattering length

aS < O 9 (2)
which implies an effective attraction between atoms.

’Li atoms have a negative scattering length

as~ —14-10"19 m . (3)
BECs with “Li atoms have been studied at Rice Univ.* and ENST.

Recently an attractive BEC with 8°Rb atoms has been investigated at JILAY
by using a Feshbach resonance.

*K.E. Strecker et al., Nature 417, 150 (2002).

fL. Khaykovich et al., Science 296, 1290 (2002).

IS.L. Cornish et al., PRL 96, 170401 (2006).



BEC Iin a harmonic trap: Gaussian variational approach

The stationary properties of a dilute Bose-Einstein condensates (BEC) are
well described by the Gross-Pitaevskii equation (GPE), given by

47rh2a8N

2
[ 924U + B@)[2] $() = p B(r) | (4)

where ¥ (r) is the macroscopic wave function of the BEC, here normalized to
one, i.e.

[lw@R dr=1. (5)

In the GPE u is the chemical potential, U(r) is the external trapping potential,
as 1S the s-wave scattering length and N is the number of condensed atomic
bosons.

The GPE can be obtained by minimizing the following energy functional

27Th asN

E= { V)2 + U@ +

with the constraint of Eq. (5).

|¢<r>|4} d>r (6)



Let us suppose that the external trap is a spherically-symmetric harmonic
potential

1 1

U(r)—Eme< + 42+ 2 )zimw%{'lg. (7)

A reasonable variational ansatz for 1 (r) is a Gaussian wave function

1 2
p(r) = exp ( ) , (8)
7w3/463/%53/2 2a%;02
where
h
af = \[—— (9)
mw g

IS the characteristic harmonic length and o is the variational parameter, that
iIs the scaled width of the BEC.

By inserting this trial wave function in the GPE energy functional and inte-
grating over spatial coordinates one finds the effective energy

_ 2F 31 1
B=—" =274 02+r—, (10)
th 20‘
which is a function of the variational parameter o, with I = \/gM the

. . afg
Interaction strength.



The best choice of o is obtained by minimizing the energy E(o), i.e.

OFE 1 3 1
O=—=-3—5+4+30>—-3—. 11
oo o3 T30 o4 (11)
Obviously o must also satisfy the condition
O2E
—— > 0. 12
502 (12)
It follows that
o>1 for >0,
while
ce<o<1l for —-T.<l<O0,
with oo = 1/51/4 ~ 0.67 and . = 4/5%/4 ~ 0.53.
Thus, for as < O it exist a critical strength
las|N \/ﬁ 4
= ,/—— ~ 0.67 13
apg 255/4 (13)

above which the local minumum of the energy does not exist anymore. Above
this critical strength there is the so-called collapse of the condensate. For
Li atoms of Rice Univ. experiment: N, ~ 1300.
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Let us now consider an attractive BEC (as < 0) with an anisotropic harmonic
trapping potential

U@) = 2w (2 + v?) + w2, (14)

By using the transverse harmonic length

h
a)] =/ ——, (15)
mw |

as unit of length, and Aw ;| as unit of energy, the scaled GPE energy functional
reads

_ (i1 2
E—/{§|V¢(r)| +

with

2
%@2 +9°) + %22] ()% + 2m|¢(r)|4} dr, (16)

A= Wz trap anisotropy
W
. las|N

a|

v interaction strength.



To study this problem we use the Gaussian ansatz’
1 (z° +y°) 2°
v(0) =375 exp{— N
w2/ %on 20 2n
where o and n are, respectively, transverse and axial widths. Inserting this
ansatz into the energy functional, we obtain the effective energy

(17)

A2 2 1
E——‘|‘0 +—+—"72 \/7’)’7- (18)
T 04T
We look for values of ¢ and n that minimize energy E and get
2 1

——+0+\/7 Tzoa (19)

T  0°1n

> 1
N4 [2 gy =0, (20)

77 T (7 77

These equations give local minima only if the curvature of E(n, o) is positive.

Remarkably, there is a local minumum also with A = 0, i.e. also without
axial confinement: this is the so-called bright soliton. This bright soliton
collapses at a critical strength ~. ~ 0.78.

§__.S., A. Parola, and L. Reatto, PRA 66, 043603 (2002).



We can also study the dynamics of the attractive BEC by using the La-
grangian’

. 1. _
L=02+§n2—E(0,n)- (21)
The equations of motion are
. 1 2 1
a——3+a+\ﬁv7=o, (22)
o ™ o°n
. 1 2 1
77——3+)\277+\/i’)’ﬂ=0- (23)
n ™ o7

From these equations one can quite easily derive the frequencies €27 and <2,
of small oscillations around the local minima.

(21 and €2, are the frequencies of breathing modes along radial and axial
direction.

IL.S., Int. J. Mod. Phys. B 14 405 (2000).
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Gaussian variational approach to the attractive BEC. Top: Widths ¢ and n. Bottom:
Breathing frequencies w1 and ws. All vs interaction strength . Trap anisotropy: black solid
line (A = 0); red dotted line (A = 0.01); green dashed line (A = 0.1).



Bright solitons and their properties

To investigate in detail the properties of bright soltions we start from the
time-dependent 3D GPE given by

Arh?|as|N

|¢(r,t>|2} (r,t),,  (24)

where ¥ (r,t) is the wave function of the attractive BEC. Let us suppose that
the trapping potential is

L0 I N _
zhaw(r,t)—[ V24 U()

U@) = Zmed (2% +9) + V(). (25)

By using the transverse harmonic length

S (26)
mw |

as unit of length, and hw | as unit of energy, the scaled 3D GPE reads

0 1 1
i b0 = [-5V2+ S@2 ) + V() — Amlea O v, (27)

where
|a3|N

]

. (28)




The 3D GPE is the Euler-Lagrange equation of the following Lagrangian
density

L= ¢*(r, 1) (% + V) 0 D= @+, DRV @, 0 P4 2m (e, )

(29)
We consider a semi-Gaussian variational ansatz
1 (2 + y?)
r,t) = exp q — 1) . 30
vt = 5 p{ ez [T (30)

Inserting this expression into the 3D Lagrangian density, integrating over z
and y variables, the two Euler-Lagrange equations are

1/4

o(z,t) = (1 - 21/ (z,0)P) (31)
0 [ 102 1 |f(z,tﬂ2
Zaf(zat)— —§@+V(Z)+ ( (2, )2+ o(z,1) ) o(z,t)Qlf(z’t)
(32)

Eqg. (34) with Eqg. (31) is the so-called nonpolynomial Schrodinger equation
(NPSE).

IL.S., A. Parola, and L. Reatto, PRA 65, 043614 (2002).



Under the weak-coupling condition g|f(z,t)|2 < 1 one finds

o(z,t) ~ 1, (33)
and the NPSE becomes the 1D GPE
%, 107 5
—f(z,t)) = |———=+V — 2 b 1) . 34
0G0 = |52+ V() — 2301 O 1.0 (34)
Remarkably, with
V(z) =0
the 1D GPE admits a self-localized stationary solution
f(z,t) = \/g sech? (vz) exp (—iut), (35)
where 4 = —2~2. This is the ground-state of the attractive 1D GPE with

V(z) = 0 and there is no collapse.

This solution is called bright soliton because the 1D GPE with V(z) = 0
admits also the shape-invariant time-dependent solution

f(z,t) = \/Z sech? (v(z —vt)) exp (iv(z — vt)) exp (i(v2 — ,u,)t) : (36)

where the center-of-mass velocity v is arbitrary (it does not depend on system
paramters).



Let us now consider the NPSE with V(z) = 0. It can be written as

.0 1 52 1 —3q/|f(z,t)|2
) = f T 37
z—tf(z ) - 2822 \/1 i 2,,| f( 7t)|2 (z ) ( )

and admits the stationary self-localized solution

f(z,t) = ¢(z) exp (—iut) , (38)

where ¢(z) is given by the implicity formula

[ 1 1 — 22 — 1 1 — 2~vh2 —
\/Ez = ,/—Arctanh J \/ 7¢ H — —tan_l J \/ V(b H
1—p 1—p 1+ u 14+

(39)
with p given by the implicity formula 2y = %(QM + 1)v/1— .
This 3D bright soliton exists up to the critical strength
as|N 2
%=CS')=—. (40)
a| c 3

Above this value there is the collapse of the bright soliton.



Stationary 3D bright soliton: NPSE gives practically the same results of

the 3D GPE.**
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Axial density profile p(z) of the BEC bright soliton: 3D GPE (full line), NPSE (dotted line),
1D GPE (dashed line). v = |as|N/a,.

*L.S., A. Parola, and L. Reatto, PRA 66, 043603 (2002).



Simulating the ENS experiment with bright solitons

In the ENS experiment!™ with bright solitons made of ‘Li atoms the longitu-
dinal potential

V(z) = Jwia?, (41)

is expulsive (inverted parabola) because

w, = 271 X 78 Hz (42)

IS an imaginary longitudinal frequency. In the experiment the s-wave scatter-
ing length as of "Li atoms is modified by the Feshbach-resonance technique.

We have quite succesfully simulated this experiment by using the NPSE.#

ITL. Khaykovich, F. Schreck, G. Ferrari, T. Bourdel, J. Cubizolles, L. D. Carr, Y. Castin, C.
Salomon, Science 296, 1290 (2002)

LS., PRA 70, 053617 (2004).



Density of the “Li BEC in the expulsive potential obtained by solving the NPSE. The BEC
cloud propagates over 1 mm. Case with a; = 0 (ideal gas). There are N = 4 x 103 atoms.
Six frames from bottom to top: t =2 ms, t =3 mMs,t=4ms,t=5ms,t=6mMs, t=7

ms. Red color corresponds to highest density.



Density of the “Li BEC in the expulsive potential obtained by solving the NPSE. The BEC
cloud propagates over 1 mm. Case with as = —0.21 nm (“bright soliton”). There are
N = 4 x 103 atoms. Six frames from bottom to top: t=2ms, t=3 ms, t=4ms, t=>5

ms, t =6 ms, t =7 ms. Red color corresponds to highest density.



t [ms]

Root mean square size of the longitudinal width of the BEC as a function of the propagation
time t. The filled circles are the experimental data of ENS experiment. The dashed line is
the ideal gas (as = 0) curve. The solid line is obtained from the numerical solution of the
NPSE.



Including an axial optical lattice

Let us now consider the inclusion of a periodic potential (optical lattice)
acting along axis z on the properties of an attractive BEC. The external
potential is

U@ = 2@+ + V() (43)
where
V(z) = —Vycos (2krz) . (44)

Here we use again the transverse harmonic length

h
a)] = /—, (45)
mw |

as unit of length, and hw,; as unit of energy.

We use the 3D GPE and the NPSE to investigate the attractive BEC (bright
soliton) under these trapping conditions.
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The axial density profile, |f(z)|?, of the soliton in periodic potential, with k;, = 1 and four
different values of V5. The self-attraction strength is fixed at g = 2|as|N/a; = 0.5. From:
L.S., A. Cetoli, B.A. Malomed, and F. Toigo, PRA 75, 033622 (2007).
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FIG. 2: Axial length of the ground-state bright soliton, <22>1/2, as a function of self-attraction
strength g = 2|as|N/a,, for Vo = 0.4 and k; = 1. Displayed are results provided by the
Gaussian variational and by the NPSE.

From: L.S., A. Cetoli, B.A. Malomed, and F. Toigo, PRA 75, 033622 (2007).



Vo Je \/<z2> o(0)
0 1.33 0.91 0.75
0.1 1.26 0.77 0.68
0.5 1.07 0.64 0.61
1 0.96 0.50 0.60
2 0.85 0.41 0.57

TABLE 1: The critical value of the self-attraction strength, g., and the corresponding values
of the axial length, \/@ and minimal transverse width, ¢(0), of the soliton in the periodic
potential, V(z) = —Vpcos (2kpz), with k; = 1, for different values of V,, as found from
numerical solution of the NPSE.

From: L.S., A. Cetoli, B.A. Malomed, and F. Toigo, PRA 75, 033622 (2007).
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FIG. 3: The axial density profile, p(z), of the soliton in potential, with k; = 1 and Vp = 0.2.
Comparison between results provided by the different equations: NPSE, 3D GPE, and 1D
GPE. In the case of the 3D equation, the axial density is defined as p(z) = [ [ |¢(r)|?dzdy,
while in the other cases it is simply |f(2)|?.

From: L.S., A. Cetoli, B.A. Malomed, and F. Toigo, PRA 75, 033622 (2007).



To study the dynamics of the bright soltion in the axial optical lattice, we
multiply the stationary solution fp(z) by exp(ipz), i.e., use initial conditions

f(z) = fo(z) exp(ipz) (46)

where p is the momentum of the imposed kick.

We solved the full time-dependent NPSE,

2 _3 2 |
ZM: —la——VOCOS(QkLz)—I— 1 29|f(z,t)|
V1—glfGtP?

ot 2022
with the initial condition of Eq. (46), by using a Crank-Nicholson predictor-
corrector algorithm in real time. Here the interaction strength g is given
by

f(z,t), (47)

2|las|N
g= -
aj

Note that configuration (46) can be created experimentally by means of the
so-called phase-imprinting technique.



Our numerical simulations (136 x 2 = 272 runs!) reveal the existence of three
different dynamical regimes:

(i) stable breathers, i.e., solitons steadily moving at an almost constant
velocity, with small-amplitude shape oscillations.

(ii) dispersive dynamics, in which case the soliton strongly spreads out in
the course of the evolution: here solitons move at a variable speed.

(iii) localization, in which a narrow soliton remains trapped in one lattice
cell.
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FIG. 6: Dynamical regimes in the plane of (p,g). Black region: steadily moving breather-

like solitons; gray region: spreading out of the irregularly moving soliton; white region:
localization (the center of mass does not move). Parameters of the optical lattice are k;, = 1
and Vo = 0.5.
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FIG. 7: Dynamical regimes in the plane of (p,g). Black region: steadily moving breather-
like solitons; gray region: spreading out of the irregularly moving soliton; white region:
localization (the center of mass does not move). Parameters of the optical lattice are k;, = 1
and Vo = 1.



Conclusions

BECs with negative scattering length show interesting properties:
— collapse above a critical strength;
— bright soliton solutions.

By using 3D GPE and NPSE we have succcesfully simulated the only two
experiments (Rice Univ. and ENS) on BEC bright solitons (more details

on request).

In an axial optical lattice (AOL) the bright soliton occupies one or many-
sites depending on inter-atomic stregth and lattice parameters.

The behavior of a kicked bright soliton in a AOL shows 3 regimes:
— breather-like;

— irregular dynamics;

— localization.

THANKS!!



