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Self-bound Bose-Bose droplets

In 2015 Dmitry Petrov suggested theoretically1 the existence of
self-bound quantum droplets in an attractive Bose-Bose mixture,
where the collapse is suppressed by a beyond-mean-field term.

Experiments with two internal states of 39K atoms in a 3D
configuration, performed both at Barcelona2 and Florence3,
confirmed these theoretical predictions.

In another experiment at Barcelona4 self-bound states of the
two-component BEC were studied in a tight optical waveguide
(quasi-1D confinement): a smooth crossover interpolating between
bright soliton and droplet states has been observed.

In 2019 at LENS (Florence) there was the observation of quantum
droplets in a 87Rb-41K heteronuclear bosonic mixture.5

1D.S. Petrov, Phys. Rev. Lett. 115, 155302 (2015).
2C.R. Cabrera et al., Science 359, 6373 (2018).
3G. Semeghini et al.. Phys. Rev. Lett. 120, 235301 (2018)
4P. Cheiney et al., Phys. Rev. Lett. 120 135301 (2018).
5C. D’Errico et al, Phys. Rev. Res. 1, 033155 (2019).



Beyond-mean-field effective action (I)

We consider a Bose gas made of atoms in two different hyperfine states.
Each component can be described by a complex field ψj(r, t) (j = 1, 2),
whose dynamics results from the following real-time low-energy effective
action

S =

∫
dt d3r

[ ∑
j=1,2

i~
2

(
ψ∗j ∂tψj − ψj∂tψ

∗
j

)
− Etot

(
ψ1, ψ2

)]
. (1)

The total energy density Etot reads

Etot =
∑
j=1,2

[
~2

2m
|∇ψj |2 + Vext(r)|ψj |2 +

1

2
gjj |ψj |4

]
+ g12|ψ1|2|ψ2|2 + EBMF(ψ1, ψ2) ,

(2)

where Vext(r) is an external confining potential, gjk = 4π~2ajk/m are the
interaction strengths with ajk being intra- and inter-species scattering
lengths, and nj(r, t) = |ψj(r, t)|2 is the number density of the species j .



Beyond-mean-field effective action (II)

The beyond-mean-field term EBMF arises from the zero-point energy of
Bogoliubov elementary excitations6, namely

EBMF =
8

15π2

(m
~2

)3/2

(g11n1)5/2f

(
g2

12

g11g22
,
g22n2

g11n1

)
(3)

with f (x , y) =
∑
±[1 + y ±

√
(1− y)2 + 4xy ]5/2/(4

√
2).

The calculation leading to the ground state properties can be simplified
by assuming7 the two components occupying the same spatial mode
φ(r, t). The bosonic fields can then be written as

ψj(r, t) =
√
Nj φ(r, t) . (4)

This assumption neglects the inter-component dynamics, resulting
inadequate to probe spin-dipole oscillations.

6D.M. Larsen, Ann. Phys. 24, 89 (1963).
7D.S. Petrov, Phys. Rev. Lett. 115, 155302 (2015); D.S. Petrov and G.E.

Astrakharcik, Phys. Rev. Lett. 117, 100401 (2016).



Beyond-mean-field effective action (III)

We work under the condition

N1

N2
=

√
a22

a11
, (5)

which comes from the minimization of the mean-field energy density for
the uniform system.8 By defining9

∆a = a12 +
√
a11a22 with a11 > 0, a22 > 0 , (6)

the total energy density reads (with N = N1 + N2)

Etot

N
=

~2

2m

∣∣∇φ∣∣2 + Vext(r)
∣∣φ∣∣2 + N

4π~2

m

∆a
√

a22/a11(
1 +

√
a22/a11

)2

∣∣φ∣∣4
+ N3/2 256

√
π~2

15m

( √
a11a22

1 +
√
a22/a11

)5/2

f

(
a2

12

a11a22
,

√
a22

a11

)∣∣φ∣∣5 .
(7)

8D.S. Petrov, Phys. Rev. Lett. 115, 155302 (2015).
9Notice that the mean-field uniform system becomes unstable for ∆a < 0.



Beyond-mean-field effective action (IV)

Inspired by the experiment of the Tarruell group at Barcelona10 with 39K
atoms, we study a quasi-1D optical waveguide which gives a harmonic
confinement only on a transverse plane

Vext(r) =
1

2
mω2
⊥(x2 + y2) . (8)

The presence of a harmonic potential defines a characteristic length
scale, namely

a⊥ =

√
~

mω⊥
. (9)

We work with a11 > 0, a22 > 0 but a12 < 0. We investigate different
values of

∆a = a12 +
√
a11a22 (10)

in the regime where ∆a < 0, namely in the regime where
a12 < −

√
a11a22.

10P. Cheiney et al., Phys. Rev. Lett. 120 135301 (2018).



Gaussian ansatz and soliton-droplet crossover (I)

The properties of the system can be analytically explored by taking a
Gaussian variational ansatz

φ(r) =
1

π3/4σρσ
1/2
z

exp

(
− x2 + y2

2σ2
ρ

− z2

2σ2
z

)
, (11)

whose variational parameters are σρ and σz .
By replacing Eq. (11) in the total energy density, the variational energy
per particle is then given by

E

N~ω⊥
=

1

4

( 2

σ2
ρ

+
1

σ2
z

)
+
σ2
ρ

2
+

2N∆a√
2πσ2

ρσz

√
a22/a11(

1 +
√
a22/a11

)2

+
512
√

2

75
√

5π7/4

N3/2

(σ2
ρσz)3/2

( √
a11a22

1 +
√
a22/a11

)5/2

f

(
a2

12

a11a22
,

√
a22

a11

)
.

(12)
Here the lengths are in units of a⊥.
Experimentally, by means of Feshbach resonance, below a critical value of
the external magnetic field, the condition ∆a < 0 is achieved.



Gaussian ansatz and soliton-droplet crossover (II)

Axial width σz (black solid curve) and transverse width σρ (red dashed
curve) as a function of ∆a = a12 +

√
a11a22, for three values of the

particle number N in the 39K-39K mixture. We set a11 = a22 = 33.5a0

and use a12 < 0. a0 is the Bohr radius. The self-bound spherical
droplet is obtained when σρ = σz .11

11A. Cappellaro, T. Macri, and LS, Phys. Rev. A 97, 053623 (2018).



Breathing modes (I)

A deeper insight into the differences between solitonic and droplet states
can be reached by examining collective excitations around the minima of
the Gaussian variational energy.
Thus, we adopt a time-dependent Gaussian variational ansatz for the
complex scalar field:

φ(r, t) =

√√√√√ 1

π3/2
∏

K=x,y ,z

σK (t)
exp

( ∑
K=x,y ,z

(
− K 2

2σK (t)2
+ iβ(t)K 2

))
.

(13)
Inserting this ansatz into the beyond-mean-field effective action, after
some manipulations we obtain a new effective action for the three
time-dependent variational widths σK (t).
From the corresponding linearized Euler-Lagrange equations we find three
collective frequencies: two (quasi-degenerate) frequencies are related to a
breathing oscillation in the x − y plane while the third frequency is
related to a beathing along the z axis.



Breathing modes (II)

Breathing frequencies (red, green and black curves) as a function of
∆a = a12 +

√
a11a22, for three values of the particle number N in the

39K-39K mixture with a11 = a22 = 33.5a0 and a12 < 0. The blue curve is
−µ/~, with µ the chemical potential for µ < 0 (quantum droplet
regime).12

12A. Cappellaro, T. Macri, and LS, Phys. Rev. A 97, 053623 (2018).



Spin-dipole mode (I)

We now consider the oscillatory motion occurring when there is a
displacement z̄1(t)− z̄2(t) along the z axis of the centers of mass z̄j(t)
of the two bosonic components.
To model this spin-dipole collective dynamics, we go beyond the
assumption where the two components occupy the same spatial mode.
The corresponding Gaussian variational ansatz is given by

ψj(r, t) =

√√√√√ Nj

π3/2
∏

K=x,y ,z

σK (t)
×

exp

[ ∑
K=x,y ,z

(
− (K − z̄j(t)δK ,z)2

2σK ,j(t)2
+ iαj(t)z + iβK ,j(t)K 2

)]
,

where the fields ψj(r, t) are normalized to Nj .



Spin-dipole mode (II)

We insert the time-dependent variational ansatz for the two fields ψj(r, t)
into the beyond-mean-field effective action, which becomes a functional
of the variational parameters.
After several manipulations, we find that z̃(t) = z1(t)− z2(t) satisfies
the equation

d2

dt2
z̃(t) + ω2

sd z̃(t) = 0 , (14)

where the spin-dipole frequency ωsd of the relative motion of the two
bosonic clouds reads

ω2
sd

ω2
⊥

= −
√

8

π

N1

(
a12/a⊥

)
σ2
ρ,0σ

3
z,0

+
2048

25π1/4

(a11/a⊥)5/2N
3/2
1

σ2
ρ,0σ

7/2
z,0

, (15)

where σρ,0 and σz,0 are the equilibrium values, and assuming N1 = N2.



Spin-dipole mode (III)

Spin-dipole frequency (black curve with red dots) as a function of
∆a = a12 +

√
a11a22, for three values of the particle number N in the

39K-39K mixture with a11 = a22 = 33.5a0 and a12 < 0. The blue curve is
−µ/~ for µ < 0.13

13A. Cappellaro, T. Macri, and LS, Phys. Rev. A 97, 053623 (2018).



Bose-Bose droplets with Rabi coupling (I)

Let us consider again a bosonic gas is characterized by two-hyperfine
components with bosonic complex fields ψj(r, t), j = 1, 2. The
Lagrangian density of the system reads

L =
∑
j=1,2

[
i~ψ∗j ∂tψj −

~2

2m
|∇ψj |2 −

g

2
|ψj |4

]
− g12|ψ1|2|ψ2|2

+ ~ωR [ψ∗1ψ2 + ψ∗2ψ1] . (16)

In addition to the usual intra-species (g = g11 = g22) and inter-species
(g12) contact interactions, atoms with mass m in different hyperfine
states interact also via an external coherent Rabi coupling of frequency
ωR, which drives an exchange of atoms between the two components.



Bose-Bose droplets with Rabi coupling (II)

The presence of the Rabi coupling implies that only the total number

N = N1(t) + N2(t) (17)

of atoms is conserved, with

Nj(t) =

∫
|ψj(r, t)|2 d3r (18)

the number of atoms in the j-th hyperfine component (j = 1, 2).
In 2013 the existence and stability of the symmetric ground state with
N1 = N2 was discussed by Abad and Recati14. In addition to the
symmetric configuration, a ground state with non-zero population
imbalance is also possible15

14M. Abad and A. Recati, Eur. Phys. J. D 67 (7), 148 (2013).
15C. P. Search, A. G. Rojo, and P. R. Berman, Phys. Rev. A 64, 013615 (2001).



Bose-Bose droplets with Rabi coupling (III)

At the mean-field level, for the symmetric and uniform ground state,
characterized by n1 = n2 = n/2, the chemical potential µ reads

µ =
1

2
gn(1 + ε)− ~ωR , (19)

where n = N/L2 is the 2D total number density of bosons, with g > 0
and ε = g12/g .
This mean-field symmetric and uniform ground state is stable under
the conditions16

g + g12 > 0 and (g − g12)n + 2~ωR > 0 , (20)

namely

−1 < ε < 1 +
2~ωR

gn
. (21)

16M. Abad and A. Recati, Eur. Phys. J. D 67 (7), 148 (2013).



Bose-Bose droplets with Rabi coupling (IV)

The Bogoliubov spectrum of elementary excitations of the uniform
system has two branches, given by

E
(−)
k =

√
~2k2

2m

[
~2k2

2m
+ 2
(
µ+ ~ωR

)]
, (22)

E
(+)
k =

√
~2k2

2m

[
~2k2

2m
+ 2A

]
+ B , (23)

where µ is the chemical potential. Moreover the two parameters
appearing in the gapped branch are

A =
1

2
gn(1− ε) + 2~ωR , (24)

B = 4~ωR

[
1

2
gn(1− ε) + ~ωR

]
, (25)

again with ε = g12/g and g = g11 = g22.



Bose-Bose droplets with Rabi coupling (V)

Remember that we set
ε = g12/g = a12/a (26)

with a the intra-component scattering length and a12 the
inter-component scattering length. We also introduce

n̄ = na3 (27)

that is our gas parameter. We use the elementary excitations to obtain
the beyond-mean-field one-loop (Gaussian) corrections to the mean-field
energy. In particular, we find17

E
EB/a3

= π
(
1 + ε

)
n̄2 − ω̄R n̄ +

8

15π2

[
2πn̄(1 + ε)

]5/2

+
8

15π2

[
2πn̄(1− ε)

]5/2
+

14

3π2
ω̄R

[
2πn̄(1− ε)

]3/2
, (28)

where EB = ~2/ma2 and ω̄R = ~ωR/EB .

17A. Cappellaro, T. Macri, G. F. Bertacco, and LS, Sci. Rep. 7, 13358 (2017).



Bose-Bose droplets with Rabi coupling (VI)

Notice that in Eq. (28) for ω̄R = 0 one recovers the Larsen’s
zero-temperature equation of state18

Moreover, from Eq. (28) one finds that for |ε| > 1 the uniform
configuration is not stable. If ε > 1, at the mean field level, one expects
phase separation or population imbalance.19

Instead, if ε < −1 the term proportional to [(1 + ε)n̄]5/2 becomes
imaginary and it gives rise to a dissipative dynamics. However, this
dissipative term can be neglected if n̄ is not too large. In this way, by
minimization of the energy density of Eq. (28), for ε < −1 we obtain

n̄min =

(
5
√
π
∣∣1 + ε

∣∣
32
√

2(1 + |ε|)5/2

[
1 +

√
1− 1792 ω̄R

15π2

(1 + |ε|)4

|1 + ε|2

])2

. (29)

as a local minimum, if ω̄R < ω̄c = 15π2

1792
|1+ε|2

(1+|ε|)4 . For larger ω̄R there is

only the absolute minimum with zero energy at n̄ = 0.

18D.M. Larsen, Ann. Phys. 24, 89 (1963).
19K. Furutani, A. Perali, and LS, Phys. Rev. A 107, L041302 (2023).



Bose-Bose droplets with Rabi coupling (VII)

The local minimum n̄min we found for ε < −1 and

ω̄R < ω̄c = 15π2

1792
|1+ε|2

(1+|ε|)4 suggests the existence of a Bose-Bose-droplet

also in the presence of Rabi coupling.
To get more info about this Bose-Bose droplet with Rabi we consider a

space-time dependent complex field Ψ(r, t) such that n(r, t) =
∣∣Ψ(r, t)

∣∣2
is the space-time dependent total number density, and clearly
N =

∫
d3r n(r, t). The dynamics of Ψ(r, t) is driven by the following

real-time effective action

Seff[Ψ∗,Ψ] =

∫
dt d3r

[
i~Ψ∗∂tΨ−

~2
∣∣∇Ψ

∣∣2
2m

− END
(
|Ψ|2

)]
, (30)

where the non-dissipative (ND) energy density END is derived from Eq.
(28) neglecting the imaginary term proportional to [(1 + ε)n̄]5/2.



Bose-Bose droplets with Rabi coupling (VIII)

Phase diagram for the Bose-Bose droplet with Rabi coupling: unstable
(white region), metastable (yellow region), stable (light blue region). We
choose 39K atoms with N1 = N2 = N, a = 40a0 with a0 the Bohr radius,
and ε = −1.5, which implies ωc/(2π) = 31.8 kHz. Red dashed line refers
to a system of N = 1200 particles.



Bose-Bose droplets with Rabi coupling (IX)

Upper panel: monopole (breathing) mode frequency ωM (solid) and
quadrupole mode frequency ωQ (dashed) of the Bose-Bose droplet as a
function of particle number, with ωR/2π = 1 kHz, a = 40a0, and
ε = −1.5. Below N ' 977 the droplet becomes unstable. Lower panel:
frequencies as a function of Rabi coupling for N = 2 · 103 (red), and
N = 105 (blue). The critical Rabi frequency occurs at ωc/(2π) = 31.8
kHz.



Conclusions

We have analyzed a two-component BEC with attractive
interparticle interactions along the crossover from soliton to
self-bound droplets in a quasi one dimensional waveguide.

We have found a sharp difference of the collective modes in the two
regimes:
– in the soliton regime: two distinguishable collective frequencies;
– deep into the spherical droplet regime: only one breathing
frequency (triple degenerate).

Also the spin-dipole mode can be excited, and we have found an
analytical formula for it.

The inclusion of a Rabi coupling modifies the properties of the
two-component quantum droplet.
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