
First and second sound in two-dimensional
bosonic and fermionic systems

Luca Salasnich

Dipartimento di Fisica e Astronomia “Galileo Galilei” and INFN, Università di Padova
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Landau theory of first and second sound (I)

According to Landau’s two fluid theory1 of superfluids the total number
density n of a system in the superfluid phase can be written as

n = ns + nn , (1)

where ns is the superfluid density and nn is the normal density. At the
critical temperature Tc one has nn = n and, correspondingly, ns = 0.

Following Landau, in a superfluid a local perturbation excites two
wave-like modes - first and second sound - which propagate with
velocities u1 and u2. These velocities are determined by the positive
solutions of the algebraic biquadratic equation

u4 + (c2
10 + c2

20)u2 + c2
T c

2
20 = 0 . (2)

The first sound u1 is the largest of the two positive roots of Eq. (2) while
the second sound u2 is the smallest positive one.

1L.D. Landau, J. Phys. (USSR) 5, 71 (1941).



Landau theory of first and second sound (II)

In the biquadratic equation there is the adiabatic sound velocity

c10 = vA =

√
1

m

(
∂P

∂n

)
S̄,V

(3)

with S̄ = S/N the entropy per particle, the entropic sound (or Landau)
velocity,

c20 = vL =

√√√√ 1
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)
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nn
(4)

with ns/nn the ratio between superfluid and normal density, and the
isothermal sound velocity

cT = vT =

√
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(
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)
T ,V

. (5)



Weakly-interacting 2D Bose gas (I)

The Helmholtz free energy2 of a weakly-interacting two-dimensional gas
of identical bosons of mass m can be written as (~ = kB = 1)

F = F0 + FQ + FT =
g

2

N2

L2
+

1

2

∑
p

Ep + T
∑

p

ln
[
1− e−Ep/T

]
, (6)

where F0 is the mean-field zero-temperature free energy with g is the
Bose-Bose interaction strength, N is the total number of identical bosons
confined in a square of area L2 and n = N/L2 is the two-dimensional
number density. FT is the low-temperature free energy with T is the
absolute temperature and

Ep =

√
p2

2m

(
p2

2m
+ 2gn

)
, (7)

is the Bogoliubov spectrum.

2K. Furutani, A. Tononi, and LS, New J. Phys. 23 043043 (2021).



Weakly-interacting 2D Bose gas (II)

The quantum correction FQ in the free energy is obviously ultraviolet
divergent and requires a regularization procedure. Dimensional
regularization3 leads to

FQ = −L2 m

8π

[
ln

(
εΛ

gn

)
− 2

η

]
(gn)2

, (8)

where εΛ = 4e−2γ−1/2/
(
ma2

2D

)
is a cutoff energy, γ = 0.577 is the

Euler-Mascheroni constant, a2D is the 2D s-wave scattering length, and

η =
mg

2π
(9)

is the adimensional gas parameter.4 Moreover, one also finds

εΛ

gn
=

2π

N

e−2γ−1/2+2/η

η
. (10)

3LS and F. Toigo, Phys. Rep. 640, 1 (2016)
4K. Furutani, A. Tononi, and LS, New J. Phys. 23 043043 (2021).



Weakly-interacting 2D Bose gas (III)

All the thermodynamic quantities can be obtained from the Helmholtz
free energy of Eq. (6). For instance, the pressure P is given by

P = −
(
∂F

∂L2

)
N,T

(11)

while the the entropy reads

S =

(
∂

∂T

F

N

)
N,L2

. (12)

Instead, the normal density nn can be extracted from the Landau formula

nn = −
∫

d2p

(2π)2

p2

2m

dfB(Ep)

dEp
, (13)

where fB(E ) = 1/
(
eE/T − 1

)
is the Bose-Einstein distribution.



Weakly-interacting 2D Bose gas (IV)

Actually, the Landau formula for the normal density does not take into
account the formation of quantized vortices and anti-vortices by
increasing the temperature. These quantized vortices are crucial for the
2D Bose gas to obtain the phenomenology predicted by Berezinskii5 and
Kosterlitz-Thouless.6

The presence of quantized vortices renormalize the superfluid density
ns = n− nn. The renormalized superfluid density ns(t = +∞) is obtained
by solving the Nelson-Kosterlitz-Nelson renormalization group equations7

∂t K
−1(t) = 4π3y2(t)

∂t y(t) = [2− πK (t)] y(t) (14)

where K (t) = ns(t)/T , with ns(t) the superfluid density at the
adimensional fictitious time t, and y(t) = exp [−µc(t)/T ] is the fugacity,
where µc(t) is the vortex chemical potential at fictitious time t.

5V.L. Berezinskii, Sov. Phys. JETP 34, 610 (1972).
6J.M. Kosterlitz and D.J. Thouless D J. Phys. C 5, L124 (1972).
7D.R. Nelson and J.M. Kosterlitz, Phys. Rev. Lett. 39, 1201 (1977).



Weakly-interacting 2D Bose gas (V)

For 3D superfluids the transition to the normal state is a BEC phase
transition, while in 2D superfluids the transition to the normal state is
something different: a topological phase transition.
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An important prediction of the Kosterlitz-Thouless transition is that,
contrary to the 3D case, in 2D the superfluid fraction ns/n jumps to zero
above the Berezinskii-Kosterlitz-Thhouless critical temperature TBKT .



Weakly-interacting 2D Bose gas (VI)
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First sound and second sound velocity vs adimensional temperature plotted in
comparison with recent experimental data near TBKT [P. Christodoulou et al.,
Nature 594, 191 (2021)]. Here vB = gn is the Bogoliubov velocity, N = 2178
and η = 0.102. The blue line is our first sound velocity u1 while the green
line is our second sound velocity u2. Figure adapted from K. Furutani, A.
Tononi, and LS, New J. Phys. 23, 043043 (2021).



2D Fermi gas in the BCS-BEC crossover (I)

In 2004 the 3D BCS-BEC crossover has been observed with ultracold
gases made of two-component fermionic 40K or 6Li atoms.8

This crossover is obtained using a Fano-Feshbach resonance to change
the 3D s-wave scattering length aF of the inter-atomic potential.

8C.A. Regal et al., PRL 92, 040403 (2004); M.W. Zwierlein et al., PRL 92, 120403
(2004); J. Kinast et al., PRL 92, 150402 (2004).



2D Fermi gas in the BCS-BEC crossover (II)

More recently also the 2D BEC-BEC crossover has been achieved
experimentally9 with a Fermi gas of two-component 6Li atoms.

Contrary to the 3D case, 2D realistic interatomic attractive potentials
have always a bound state. In particular10, the binding energy εB > 0 of
two fermions is related to the 2D scattering length aF by

εB =
4

e2γ

~2

maF 2
, (15)

where γ = 0.577 is the Euler-Mascheroni constant. Moreover, the
attractive (negative) interaction strength g of s-wave pairing is related to
the binding energy by the expression11

− 1

g
=

1

2L2

∑
k

1
~2k2

2m + 1
2εB

. (16)

9V. Makhalov et al. PRL 112, 045301 (2014); M.G. Ries et al., PRL 114, 230401
(2015); I. Boettcher et al., PRL 116, 045303 (2016); K. Fenech et al., PRL 116,
045302 (2016).

10C. Mora and Y. Castin, 2003, PRA 67, 053615.
11M. Randeria, J-M. Duan, and L-Y. Shieh, PRL 62, 981 (1989).



2D Fermi gas in the BCS-BEC crossover (III)

To study the 2D BCS-BEC crossover we adopt the formalism of
functional integration12. The partition function Z of the uniform system
with fermionic fields ψs(r, τ) at temperature T , in a 2-dimensional
volume L2, and with chemical potential µ reads

Z =

∫
D[ψs , ψ̄s ] exp

{
−S

~

}
, (17)

where (β ≡ 1/(kBT ) with kB Boltzmann’s constant)

S =

∫ ~β

0

dτ

∫
L2

d2r L (18)

is the Euclidean action functional with Lagrangian density

L = ψ̄s

[
~∂τ −

~2

2m
∇2 − µ

]
ψs + g ψ̄↑ ψ̄↓ ψ↓ ψ↑ (19)

where g is the attractive strength (g < 0) of the s-wave coupling.
12N. Nagaosa, Quantum Field Theory in Condensed Matter (Springer, 1999).



2D Fermi gas in the BCS-BEC crossover (IV)

In particular, we are interested in the grand potential Ω, given by

Ω = − 1

β
ln (Z) ' − 1

β
ln (ZmfZg ) = Ωmf + Ωg , (20)

where

Zmf =

∫
D[ψs , ψ̄s ] exp

{
−Se(ψs , ψ̄s ,∆0)

~

}
(21)

is the mean-field partition function and

Zg =

∫
D[ψs , ψ̄s ]D[η, η̄] exp

{
−Sg (ψs , ψ̄s , η, η̄,∆0)

~

}
(22)

is the partition function of Gaussian pairing fluctuations.



2D Fermi gas in the BCS-BEC crossover (V)

After functional integration over quadratic fields, one finds that the
mean-field grand potential reads13

Ωmf = −∆2
0

g
L2 +

∑
k

(
~2k2

2m
− µ− Esp(k)− 2

β
ln (1 + e−β Esp(k))

)
(23)

where

Esp(k) =

√(
~2k2

2m
− µ

)2

+ ∆2
0 (24)

is the spectrum of fermionic single-particle excitations.

13A. Altland and B. Simons, Condensed Matter Field Theory (Cambridge Univ.
Press, 2006).



2D Fermi gas in the BCS-BEC crossover (VI)

The Gaussian grand potential is instead given by

Ωg =
1

2β

∑
Q

ln det(M(Q)) , (25)

where M(Q) is the inverse propagator of Gaussian fluctuations of pairs
and Q = (q, iΩm) is the 4D wavevector with Ωm = 2πm/β the
Matsubara frequencies and q the 3D wavevector.14

The sum over Matsubara frequencies is quite complicated and it does not
give a simple expression. An approximate formula15 is

Ωg '
1

2

∑
q

Ecol(q) +
1

β

∑
q

ln (1− e−β Ecol (q)) , (26)

where
Ecol(q) = ~ ω(q) (27)

is the spectrum of bosonic collective excitations with ω(q) derived from

det(M(q, ω)) = 0 . (28)
14R.B. Diener, R. Sensarma, M. Randeria, Phys. Rev. A 77, 023626 (2008).
15E. Taylor, A. Griffin, N. Fukushima, Y. Ohashi, Phys. Rev. A 74, 063626 (2006).



2D Fermi gas in the BCS-BEC crossover (VII)

MF EOS

GPF EOS
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Zero-temperature scaled pressure P/Pid vs scaled binding energy εB/εF . Notice
that P = −Ω/L2 and Pid is the pressure of the ideal 2D Fermi gas. Filled
circles with error bars: experimental data of Makhalov et al. 16. Solid line: our
regularized Gaussian theory.17 Figure adapted from G. Bighin and LS, Phys.
Rev. B 93, 014519 (2016).

16V. Makhalov et al. Phys. Rev. Lett. 112, 045301 (2014).
17See also L. He, H. Lu, G. Cao, H. Hu and X.-J. Liu, PRA 92, 023620 (2015).



2D Fermi gas in the BCS-BEC crossover (VIII)

We are now interested on the temperature dependence of superfluidy
density ns(T ) of the system.
At the Gaussian level ns(T ) depends only on fermionic single-particle
excitations Esp(k).18 Beyond the Gaussian level also bosonic collective
excitations Ecol(q) contribute.19

Thus, we assume the following Landau-type formula for the superfluid
density20

ns(T ) = n−β
∫

d2k

(2π)2
k2 eβEsp(k)

(eβEsp(k) + 1)2
− β

2

∫
d2q

(2π)2
q2 eβEcol (q)

(eβEcol (q) − 1)2
.

(29)

Clearly, this bare superfluid density must be renormalized using the flow
equations of Kosterlitz-Thouless-Nelson, which take into account the
effect of quantized vortices and anti-vortices.

18E. Babaev and H.K. Kleinert, Phys. Rev. B 59, 12083 (1999).
19L. Benfatto, A. Toschi, and S. Caprara, Phys. Rev. B 69, 184510 (2004).
20G. Bighin and LS, Phys. Rev. B 93, 014519 (2016).



2D Fermi gas in the BCS-BEC crossover (IX)

Our theoretical predictions21 for the Berezinskii-Kosterlitz-Thouless critical
temperature TBKT compared to experimental observation22 (filled circles with
error bars).

21G. Bighin and LS, Phys. Rev. B 93, 014519 (2016).
22P.A. Murthy et al., Phys. Rev. Lett. 115, 010401 (2015).



2D Fermi gas in the BCS-BEC crossover (X)

We calculate the first sound velocity u1 and the second sound velocity u2

in the 2D BCS-BEC crossover.
We also analyze the amplitudes modes W1and W2 of the response to a
density perturbation,23 i.e.

δn(x , t) = W1δn1(x ± u1t) + W2δn2(x ± u2t) (30)

where
W1

W1 + W2
=

(u2
1 − c2

20) u2
2

(u2
1 − u2

2) c2
20

(31)

and
W2

W1 + W2
=

(c2
20 − u2

2) u2
1

(u2
1 − u2

2) c2
20

. (32)

23T. Ozawa and S. Stringari, Phys. Rev. Lett. 112, 025302 (2014).



2D Fermi gas in the BCS-BEC crossover (XI)

First sound velocity u1 (red solid line) and second sound velocity u2 (blue
dashed line) along the BCS-BEC crossover, at temperature T/TF = 0.01, with
TF = εF/kB and vF =

√
2εF/m. Green points: recent measurements of the

first sound [M. Bohlen et al. Phys. Rev. Lett. 124, 240403 (2020).] Right
inset: relative contribution to the density response of u1 (red solid line) and u2

(blue dashed line). Figure adapted from A. Tononi, A. Capellaro, G. Bighin,
and LS, Phys. Rev. A 103, L061303 (2021).



2D Fermi gas in the BCS-BEC crossover (XII)

First sound velocity u1/vF (red solid line) and second sound velocity u2/vF
(blue dashed line) plotted in terms of the rescaled temperature T/TF , for
three different values of the crossover parameter: ln(εB/εF ) = −5 (BCS
regime), ln(εB/εF ) = 0 (unitary regime), and ln(εB/εF ) = 5 (BEC regime).
Insets: relative contribution to the density responses W1,2/(W1 + W2) of u1

and u2. Figure adapted from A. Tononi, A. Capellaro, G. Bighin, and LS, Phys.
Rev. A 103, L061303 (2021).



Conclusions

First and second sound of bosonic and fermionic superfluids can be
derived knowing the equation of state and the superfluid fraction
and using the Landau’s two-fluid theory.

In the case of a 2D weakly-interacting Bose gas, we have
calculated first and second sound. The comparison with recent
measurement near TBKT is quite good.

In the BCS-BEC crossover of the 2D Fermi gas, to get a good
agreement with experimental data for the equation of state, the
critical temperature TBKT , and the sound modes, both fermionic
single-particle excitations and bosonic collective excitations are
needed.
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