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nsation and superfluidity in 2D systems

According to the Mermin-Wagner theorem?! in a 2D uniform system

one can find true condensation, i.e off-diagonal-long-range-order
(ODLRO), only at zero temperature (T = 0).

Nevertheless, as shown by Hohenberg? the 2D uniform system can have
quasi condensation, i.e. algebric-long-range-order (ALRO), below a
critical finite temperature. This critical temperature is usually identified
with the Berezinskii-Kosterlitz-Thouless temperature® below which the
2D system has a finite superfluidity.
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2D Fermi gas with pairing (I)

We consider a 2D neutral Fermi gas with attractive s-wave
interaction. The partition function Z of the system at temperature T,
in a region of area L2, and with chemical potential z can be written as
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is the Euclidean action functional and L is given by
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with g < 0 is the attractive strength of the s-wave coupling. Notice that
B =1/(kgT) with kg the Boltzmann constant.



2D Fermi gas with pairing (II)

The Lagrangian density £ is quartic in the fermionic fields s, but one
can reduce the problem to a quadratic Lagrangian density by introducing
an auxiliary complex scalar field A(r, 7) via Hubbard-Stratonovich
transformation®, which gives

Z = /D[qps,g[_zs]D[A,A] exp{—Se/h} , (4)
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and the (exact) effective Euclidean Lagrangian density L. reads

where
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2D Fermi gas with pairing (1)

It is a standard procedure to integrate out the quadratic fermionic fields
and to get a new effective action Ser which depends only on the auxiliary
field A(r, 7). In this way we obtain

zZ= /D[Avﬁ] exp {_Seff/h} ’ (7)
where
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We stress that at this level the effective action Ses is formally exact.



Mean-field (1)

In the mean-field approximation one consider a constant and real gap

parameter, i.e.
A(I’, T) =g y

and the partition function becomes
Zmf = exp {_Smf/h} = exp{—ﬁme} )

where ) A2
Qmf = — Z 3 [2In(2 cosh(BEk/2)) — B3] — L2?0
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Mean-field (1)

The constant and real gap parameter 4\ is obtained from

8S-me
=0 14
=0, (14)
which gives the gap equation
tanh ( ﬁEk/2)
_Z ) 1
g 12 Z 2F, (15)

The integral on the right side of this equation is divergent. However, in
two dimensions quite generally a bound-state energy eg exists. For the
contact potential the bound-state equation is
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Mean-field (I11)

In this way one obtains the regularized gap equation®

anh (BEc/2 1
Z (t h2k2(ﬂ E/B ) - E) =0, (17)
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which can be used to study the BCS-BEC crossover by varying the
binding energy €g.

We observe that the binding energy eg can be written as

eg =~ h?/(mazp), where axp is the 2D s-wave scattering length, such that
axp ~ a, exp(—a;/azp) with asp the 3D scattering length and a, the
characteristic length of the transverse confinement.%
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Mean-field (V)

From the thermodynamic formula

8me)
N=— 18
(% (18)

we obtain the equation for the total number of fermions

N = Z (1 - —tanh (ﬂEk/2)> : (19)

Moreover, the equation for the T = 0 number of quasi-condensed
fermionic atoms’ reads

No = 2/d2r d?r" | (b (r) Pr (X)) = Z % tanh (BE/2) . (20)
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Zero-temperature properties (1)

At T = 0 the grand potential is given by

m
me = _47Th2 L2 <,U2 +p \/ #2 + A%) ’ (2]‘)

where the chemical potential p reads

1
W= €F — 563 , (22)

with er = wh?n/m the 2D Fermi energy, and the gap parameter Ag is
instead

Ao =V 26[:63 . (23)
In addition, we find® this nice formula for the condensate fraction
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Zero-temperature properties (I1)
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Figure: Upper panel: chemical potential pz and energy gap Ao as a function of
the binding energy eg of pairs. Lower panel: Bose-condensate fraction No/N of
fermionic atoms as a function of the binding energy eg of pairs.



Zero-temperature properties (I11)

According to Landau® the first sound velocity ¢ is given by

mé=(5) . (25)
8n L2,§

where P is the pressure and S = S/N is the entropy per particle of the
superfluid. Moreover, at zero temperature it holds the following equality

(30)ee =" (0). &

Using the 2D zero-temperature mean-field result

1
p=eF—5e, (27)

where e = (7h?/m)n = mv2 /2, we finally obtain

e
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Finite-temperature properties (1)

One can explicitly calculate the temperature T* at which Ay = 0.
In particular, one obtains'® the following equations

W(T*) = ks T* In (eeF/“‘BT*) - 1) : (29)
T/ @k T") panh

eg = kg T* T exp —/ M du , (30)
gl 0 u

which determine T* and u(T*) as a function of the binding energy €3,
with v = 1.781.
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Finite-temperature properties (II)

Figure: Critical temperature T* (solid line), critical chemical potential p(T*)
(dashed line), and zero-temperature chemical potential 11(0) as a function of
the binding energy eg of pairs.



Beyond mean-field (1)

Let us now consider beyond mean-field effects. We have seen that the
exact partition function can be written as

Z= /D[A,A] exp {—Serr[A, A)/R} (31)

where Seg[A, A] is the effective action, which is a functional of the
complex bosonic auxiliary field A(r,7) of pairing.
We impose that

A(r,7) = (Do + o(r, 7)) €07) (32)

The partition function can be then formally written as

Z = e~ Fult) / Dlo,6] exp {—Soms[o 0 Dol/B}Y . (33)



Beyond mean-field (I1)

Exanding Spmf[o, 0; Ao] at the second order and functional-integrating
over the amplitude field o(r, 7) one obtains!!

Z — o Bmr(Lo) /D[G] exp {—Sp[0; Do]/R} , (34)

where 6160 — /Ohﬁ - /L2 & {é(vgf + 2(579)2} (35)

is the action functional of the phase field (Goldstone field) with J the
phase stiffness and K the phase susceptibility.

At T =0 we find r m

— K= (36)

 4q’ T Arn’

and the velocity ¢y of the Goldstone field reads

Ji VF -
R—ﬁ—cs. (37)

A.M.J. Schakel, Ann. Phys. (N.Y.) 326, 193 (2011).
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ean-field (lII)
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Figure: Upper panel: 2D scaled sound velocity ¢;/vF vs scaled binding energy
eg/er. Lower panel: 3D scaled sound velocity ¢;/ve vs scaled inverse
interaction strength 1/(kra).



nd mean-field (1V)

The renormalization-group theory'? dictates that for our 2D system the
superfluid density ns is zero above the Berezinskii-Kosterlitz-Thouless
critical temperature TgkT1. Moveover below Tgkt the superfluid
density can be written as

4m

ns(T) = ?J( T) for T < Tkt , (38)
and the critical temperature Tkt can be estimated by solving

self-consistently
o
ks TexT = EJ( TekT) , (39)

where J(T) is the finite-temperature stiffness of our action functional Sy
of the phase.
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Beyond mean-field (V)
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Figure: Dashed line: temperature T* above which Ay is zero; solid line:

Berezinskii-Kosterlitz-Thouless critical temperature Tgxr.



Beyond mean-field (V1)
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Figure: Superfluid fraction ns/n as a function of the scaled temperature
T/ Texr for different values of the scaled binding energy eg/er, where
er = (h?/m)7n is the Fermi energy. Above Tgxr one has ns = 0.



Open problems

There are several open problems regarding our 2D Fermi superfluid in the
BCS-BEC crossover. Among them we mention:

@ first and second sound at finite temperature
@ quasi-condensate at finite temperature

@ beyond mean-field equation of state

@ unbalanced system
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