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Condensation and superfluidity in 2D systems

According to the Mermin-Wagner theorem1 in a 2D uniform system
one can find true condensation, i.e off-diagonal-long-range-order
(ODLRO), only at zero temperature (T = 0).

Nevertheless, as shown by Hohenberg2 the 2D uniform system can have
quasi condensation, i.e. algebric-long-range-order (ALRO), below a
critical finite temperature. This critical temperature is usually identified
with the Berezinskii-Kosterlitz-Thouless temperature3 below which the
2D system has a finite superfluidity.

1N.D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 133 (1966).
2P.C. Hohenberg, Phys. Rev. 158, 383 (1967).
3V.L. Berezinskii, Sov. Phys. JEPT 34, 610 (1972); J.M. Kosterlitz and D.J.

Thouless, J. Phys. C 6, 1181 (1973).



2D Fermi gas with pairing (I)

We consider a 2D neutral Fermi gas with attractive s-wave

interaction. The partition function Z of the system at temperature T ,
in a region of area L2, and with chemical potential µ can be written as

Z =

∫

D[ψs , ψ̄s ] exp

{

−1

~
S

}

, (1)

where

S =

∫

~β

0

dτ

∫

L2

d2r L (2)

is the Euclidean action functional and L is given by

L =
(

ψ̄↑ , ψ̄↓

)

[

~∂τ − ~
2

2m
∇2 − µ

](

ψ↑

ψ↓

)

+ g ψ̄↑ ψ̄↓ ψ↓ ψ↑ (3)

with g < 0 is the attractive strength of the s-wave coupling. Notice that
β = 1/(kBT ) with kB the Boltzmann constant.



2D Fermi gas with pairing (II)

The Lagrangian density L is quartic in the fermionic fields ψs , but one
can reduce the problem to a quadratic Lagrangian density by introducing
an auxiliary complex scalar field ∆(r, τ) via Hubbard-Stratonovich
transformation4, which gives

Z =

∫

D[ψs , ψ̄s ]D[∆, ∆̄] exp {−Se/~} , (4)

where

Se =

∫ ~β

0

dτ

∫

L2

d2r Le (5)

and the (exact) effective Euclidean Lagrangian density Le reads

Le =
(

ψ̄↑ , ψ̄↓

)

[

~∂τ − ~
2

2m
∇2 − µ

](

ψ↑

ψ↓

)

+∆̄ψ↓ ψ↑+∆ψ̄↑ ψ̄↓−
|∆|2
g

.

(6)

4H.T.C. Stoof, K.B. Gubbels, D.B.M. Dickerscheid, Ultracold Quantum Fields
(Springer, Dordrecht, 2009).



2D Fermi gas with pairing (III)

It is a standard procedure to integrate out the quadratic fermionic fields
and to get a new effective action Seff which depends only on the auxiliary
field ∆(r, τ). In this way we obtain

Z =

∫

D[∆, ∆̄] exp {−Seff /~} , (7)

where

Seff = −Tr [ln
(

G−1
)

] −
∫

~β

0

dτ

∫

L2

d2r
|∆|2
g

(8)

with

G−1 =

(

~∂τ − ~
2

2m
∇2 − µ ∆

∆̄ ~∂τ + ~
2

2m
∇2 + µ

)

(9)

We stress that at this level the effective action Seff is formally exact.



Mean-field (I)

In the mean-field approximation one consider a constant and real gap
parameter, i.e.

∆(r, τ) = ∆0 , (10)

and the partition function becomes

Zmf = exp {−Smf /~} = exp {−βΩmf } , (11)

where

Ωmf = −
∑

k

1

β
[2 ln(2 cosh(βEk/2)) − βξk ] − L2 ∆2

0

g
(12)

with ξk = ~
2k2/(2m) − µ and

Ek =
√

ξ2
k

+ ∆2
0 . (13)



Mean-field (II)

The constant and real gap parameter ∆0 is obtained from

∂Ωmf

∂∆0
= 0 , (14)

which gives the gap equation

− 1

g
=

1

L2

∑

k

tanh (βEk/2)

2Ek

. (15)

The integral on the right side of this equation is divergent. However, in
two dimensions quite generally a bound-state energy ǫB exists. For the
contact potential the bound-state equation is

− 1

g
=

1

Ω

∑

k

1

2~2k2

2m
+ ǫB

. (16)



Mean-field (III)

In this way one obtains the regularized gap equation5

∑

k

(

tanh (βEk/2)
~2k2

2m
+ ǫB

2

− 1

Ek

)

= 0 , (17)

which can be used to study the BCS-BEC crossover by varying the
binding energy ǫB .

We observe that the binding energy ǫB can be written as
ǫB ≃ ~

2/(ma2D), where a2D is the 2D s-wave scattering length, such that
a2D ≃ az exp(−az/a3D) with a3D the 3D scattering length and az the
characteristic length of the transverse confinement.6

5M. Randeria, J-M. Duan, L-Y. Shieh, Phys. Rev. B 41, 327 (1990).
6G. Bertaina and S. Giorgini, Phys. Rev. Lett. 106, 110403 (2011).



Mean-field (IV)

From the thermodynamic formula

N = −
(

∂Ωmf

∂µ

)

L2,T

(18)

we obtain the equation for the total number of fermions

N =
∑

k

(

1 − ξk
Ek

tanh (βEk/2)

)

. (19)

Moreover, the equation for the T = 0 number of quasi-condensed
fermionic atoms7 reads

N0 = 2

∫

d2r d2r′ |〈ψ↓(r) ψ↑(r
′) 〉|2 =

∑

k

∆2
0

2E 2
k

tanh (βEk/2) . (20)

7LS, N. Manini, A. Parola, Phys. Rev. A 72, 023621 (2005).



Zero-temperature properties (I)

At T = 0 the grand potential is given by

Ωmf = − m

4π~2
L2

(

µ2 + µ
√

µ2 + ∆2
0

)

, (21)

where the chemical potential µ reads

µ = ǫF − 1

2
ǫB , (22)

with ǫF = π~
2n/m the 2D Fermi energy, and the gap parameter ∆0 is

instead
∆0 =

√
2ǫF ǫB . (23)

In addition, we find8 this nice formula for the condensate fraction

N0

N
=

1

2

π
2 + arctan ( µ

∆)

µ
∆ +

√

1 + µ2

∆2

. (24)

8LS, Phys. Rev. A 76, 015601 (2007).



Zero-temperature properties (II)
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Figure: Upper panel: chemical potential µ and energy gap ∆0 as a function of
the binding energy ǫB of pairs. Lower panel: Bose-condensate fraction N0/N of
fermionic atoms as a function of the binding energy ǫB of pairs.



Zero-temperature properties (III)

According to Landau9 the first sound velocity cs is given by

m c2
s =

(

∂P

∂n

)

L2,S̄

, (25)

where P is the pressure and S̄ = S/N is the entropy per particle of the
superfluid. Moreover, at zero temperature it holds the following equality

(

∂P

∂n

)

L2,0

= n

(

∂µ

∂n

)

L2

. (26)

Using the 2D zero-temperature mean-field result

µ = ǫF − 1

2
ǫB , (27)

where ǫF = (π~
2/m)n = mv2

F
/2, we finally obtain

cs =
vF√

2
. (28)

9L.D. Landau, Journal of Physics USSR 5, 71 (1941).



Finite-temperature properties (I)

One can explicitly calculate the temperature T ∗ at which ∆0 = 0.
In particular, one obtains10 the following equations

µ(T ∗) = kBT ∗ ln
(

eǫF /(kBT
∗) − 1

)

, (29)

ǫB = kBT ∗ π

γ
exp

(

−
∫ µ(T∗)/(2kBT

∗)

0

tanh (u)

u
du

)

, (30)

which determine T ∗ and µ(T ∗) as a function of the binding energy ǫB ,
with γ = 1.781.

10V.P. Gusynin, V.M. Loktev, and Sharapov, J. Exp. Theor. Phys. 88, 685 (1999).



Finite-temperature properties (II)
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Figure: Critical temperature T
∗ (solid line), critical chemical potential µ(T ∗)

(dashed line), and zero-temperature chemical potential µ(0) as a function of
the binding energy ǫB of pairs.



Beyond mean-field (I)

Let us now consider beyond mean-field effects. We have seen that the
exact partition function can be written as

Z =

∫

D[∆, ∆̄] exp
{

−Seff [∆, ∆̄]/~
}

, (31)

where Seff [∆, ∆̄] is the effective action, which is a functional of the
complex bosonic auxiliary field ∆(r, τ) of pairing.
We impose that

∆(r, τ) = (∆0 + σ(r, τ)) e iθ(r,τ ) . (32)

The partition function can be then formally written as

Z = e−βΩmf (∆0)

∫

D[σ, θ] exp {−Sbmf [σ, θ; ∆0]/~} . (33)



Beyond mean-field (II)

Exanding Sbmf [σ, θ; ∆0] at the second order and functional-integrating
over the amplitude field σ(r, τ) one obtains11

Z = e−βΩmf (∆0)

∫

D[θ] exp {−Sθ[θ; ∆0]/~} , (34)

where

Sθ[θ; ∆0] =

∫

~β

0

dτ

∫

L2

d2r

{

J

2
(∇θ)2 +

K

2
(∂τθ)

2

}

(35)

is the action functional of the phase field (Goldstone field) with J the
phase stiffness and K the phase susceptibility.
At T = 0 we find

J =
ǫF
4π

, K =
m

4π
, (36)

and the velocity cθ of the Goldstone field reads

cθ =

√

J

K
=

vF√
2

= cs . (37)

11A.M.J. Schakel, Ann. Phys. (N.Y.) 326, 193 (2011).



Beyond mean-field (III)
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Figure: Upper panel: 2D scaled sound velocity cs/vF vs scaled binding energy
ǫB/ǫF . Lower panel: 3D scaled sound velocity cs/vF vs scaled inverse
interaction strength 1/(kFa).



Beyond mean-field (IV)

The renormalization-group theory12 dictates that for our 2D system the
superfluid density ns is zero above the Berezinskii-Kosterlitz-Thouless

critical temperature TBKT . Moveover below TBKT the superfluid
density can be written as

ns(T ) =
4m

~2
J(T ) for T < TBKT , (38)

and the critical temperature TBKT can be estimated by solving
self-consistently

kB TBKT =
π

2
J(TBKT ) , (39)

where J(T ) is the finite-temperature stiffness of our action functional Sθ

of the phase.

12H.T.C. Stoof, K.B. Gubbels, D.B.M. Dickerscheid, Ultracold Quantum Fields
(Springer, Dordrecht, 2009).



Beyond mean-field (V)
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Figure: Dashed line: temperature T
∗ above which ∆0 is zero; solid line:

Berezinskii-Kosterlitz-Thouless critical temperature TBKT .



Beyond mean-field (VI)
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Figure: Superfluid fraction ns/n as a function of the scaled temperature
T/TBKT for different values of the scaled binding energy ǫB/ǫF , where
ǫF = (~2/m)πn is the Fermi energy. Above TBKT one has ns = 0.



Open problems

There are several open problems regarding our 2D Fermi superfluid in the
BCS-BEC crossover. Among them we mention:

first and second sound at finite temperature

quasi-condensate at finite temperature

beyond mean-field equation of state

unbalanced system
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