Superfluid density, sound velocity and Goldstone mode in the 2D BCS-BEC crossover

Luca Salasnich

Dipartimento di Fisica e Astronomia "Galileo Galilei", Università di Padova, Italy

Padova, September 26, 2013

<ロト <回ト <注ト <注ト 三日

Collaboration with: G. Bighin, L. Dell'Anna, P.A. Marchetti, G. Mazzarella, F. Toigo (Università di Padova) • Condensation and superfluidity in 2D systems

(日) (四) (문) (문) (문)

- 2D Fermi gas with pairing
- Mean-field
- Zero-temperature
- Finite-temperature
- Beyond mean-field
- Open problems

According to the **Mermin-Wagner theorem**¹ in a 2D uniform system one can find true condensation, i.e off-diagonal-long-range-order (ODLRO), only at zero temperature (T = 0).

Nevertheless, as shown by Hohenberg² the 2D uniform system can have quasi condensation, i.e. algebric-long-range-order (ALRO), below a critical finite temperature. This critical temperature is usually identified with the Berezinskii-Kosterlitz-Thouless temperature³ below which the 2D system has a finite superfluidity.

¹N.D. Mermin and H. Wagner, Phys. Rev. Lett. **17**, 133 (1966).

²P.C. Hohenberg, Phys. Rev. **158**, 383 (1967).

³V.L. Berezinskii, Sov. Phys. JEPT **34**, 610 (1972); J.M. Kosterlitz and D.J. Thouless, J. Phys. C **6**, 1181 (1973).

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

2D Fermi gas with pairing (I)

We consider a **2D neutral Fermi gas with attractive s-wave interaction**. The partition function \mathcal{Z} of the system at temperature T, in a region of area L^2 , and with chemical potential μ can be written as

$$\mathcal{Z} = \int \mathcal{D}[\psi_s, \bar{\psi}_s] \, \exp\left\{-\frac{1}{\hbar} \, S\right\} \,, \tag{1}$$

where

$$S = \int_0^{\hbar\beta} d\tau \int_{L^2} d^2 \mathbf{r} \, \mathcal{L}$$
 (2)

is the Euclidean action functional and \mathcal{L} is given by

$$\mathcal{L} = \left(\bar{\psi}_{\uparrow} , \bar{\psi}_{\downarrow}\right) \left[\hbar\partial_{\tau} - \frac{\hbar^{2}}{2m}\nabla^{2} - \mu\right] \left(\begin{array}{c}\psi_{\uparrow}\\\psi_{\downarrow}\end{array}\right) + g\,\bar{\psi}_{\uparrow}\,\bar{\psi}_{\downarrow}\,\psi_{\downarrow}\,\psi_{\uparrow} \quad (3)$$

with g < 0 is the attractive strength of the s-wave coupling. Notice that $\beta = 1/(k_B T)$ with k_B the Boltzmann constant.

The Lagrangian density \mathcal{L} is quartic in the fermionic fields ψ_s , but one can reduce the problem to a quadratic Lagrangian density by introducing an auxiliary complex scalar field $\Delta(\mathbf{r}, \tau)$ via Hubbard-Stratonovich transformation⁴, which gives

$$\mathcal{Z} = \int \mathcal{D}[\psi_s, \bar{\psi}_s] \mathcal{D}[\Delta, \bar{\Delta}] \exp\{-S_e/\hbar\}, \qquad (4)$$

where

$$S_e = \int_0^{\hbar\beta} d\tau \int_{L^2} d^2 \mathbf{r} \ \mathcal{L}_e$$
(5)

<ロト <回ト < 注入 < 注ト < 注ト = 注

and the (exact) effective Euclidean Lagrangian density \mathcal{L}_e reads

$$\mathcal{L}_{e} = \left(\bar{\psi}_{\uparrow} , \bar{\psi}_{\downarrow}\right) \left[\hbar\partial_{\tau} - \frac{\hbar^{2}}{2m}\nabla^{2} - \mu\right] \left(\begin{array}{c}\psi_{\uparrow}\\\psi_{\downarrow}\end{array}\right) + \bar{\Delta}\,\psi_{\downarrow}\,\psi_{\uparrow} + \Delta\bar{\psi}_{\uparrow}\,\bar{\psi}_{\downarrow} - \frac{|\Delta|^{2}}{g}\,.$$
(6)

⁴H.T.C. Stoof, K.B. Gubbels, D.B.M. Dickerscheid, Ultracold Quantum Fields (Springer, Dordrecht, 2009).

It is a standard procedure to integrate out the quadratic fermionic fields and to get a new effective action S_{eff} which depends only on the auxiliary field $\Delta(\mathbf{r}, \tau)$. In this way we obtain

$$\mathcal{Z} = \int \mathcal{D}[\Delta, \bar{\Delta}] \quad \exp\left\{-S_{\text{eff}}/\hbar\right\},\tag{7}$$

where

$$S_{eff} = -Tr[\ln\left(G^{-1}\right)] - \int_0^{\hbar\beta} d\tau \int_{L^2} d^2\mathbf{r} \; \frac{|\Delta|^2}{g} \tag{8}$$

with

$$G^{-1} = \begin{pmatrix} \hbar \partial_{\tau} - \frac{\hbar^2}{2m} \nabla^2 - \mu & \Delta \\ \bar{\Delta} & \hbar \partial_{\tau} + \frac{\hbar^2}{2m} \nabla^2 + \mu \end{pmatrix}$$
(9)

We stress that at this level the effective action S_{eff} is formally exact.

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

In the mean-field approximation one consider a constant and real gap parameter, i.e.

$$\Delta(\mathbf{r},\tau) = \Delta_0 , \qquad (10)$$

and the partition function becomes

$$\mathcal{Z}_{mf} = \exp\left\{-S_{mf}/\hbar\right\} = \exp\left\{-\beta\Omega_{mf}\right\},\qquad(11)$$

where

$$\Omega_{mf} = -\sum_{\mathbf{k}} \frac{1}{\beta} \left[2 \ln(2 \cosh(\beta E_k/2)) - \beta \xi_k \right] - L^2 \frac{\Delta_0^2}{g}$$
(12)

with $\xi_k = \hbar^2 k^2/(2m) - \mu$ and

$$E_{\mathbf{k}} = \sqrt{\xi_k^2 + \Delta_0^2} \ . \tag{13}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへ⊙

The constant and real gap parameter Δ_0 is obtained from

$$\frac{\partial \Omega_{mf}}{\partial \Delta_0} = 0 , \qquad (14)$$

which gives the gap equation

$$-\frac{1}{g} = \frac{1}{L^2} \sum_{\mathbf{k}} \frac{\tanh\left(\beta E_{\mathbf{k}}/2\right)}{2E_{\mathbf{k}}} \,. \tag{15}$$

The integral on the right side of this equation is divergent. However, in two dimensions quite generally a bound-state energy ϵ_B exists. For the contact potential the bound-state equation is

$$-\frac{1}{g} = \frac{1}{\Omega} \sum_{\mathbf{k}} \frac{1}{2\frac{\hbar^2 k^2}{2m} + \epsilon_B} \,. \tag{16}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへ⊙

In this way one obtains the regularized gap equation⁵

$$\sum_{\mathbf{k}} \left(\frac{\tanh\left(\beta E_{\mathbf{k}}/2\right)}{\frac{\hbar^2 k^2}{2m} + \frac{\epsilon_B}{2}} - \frac{1}{E_k} \right) = 0 , \qquad (17)$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

which can be used to study the BCS-BEC crossover by varying the binding energy ϵ_B .

We observe that the binding energy ϵ_B can be written as $\epsilon_B \simeq \hbar^2/(ma_{2D})$, where a_{2D} is the 2D s-wave scattering length, such that $a_{2D} \simeq a_z \exp(-a_z/a_{3D})$ with a_{3D} the 3D scattering length and a_z the characteristic length of the transverse confinement.⁶

- ⁵M. Randeria, J-M. Duan, L-Y. Shieh, Phys. Rev. B **41**, 327 (1990).
- ⁶G. Bertaina and S. Giorgini, Phys. Rev. Lett. **106**, 110403 (2011).

From the thermodynamic formula

$$N = -\left(\frac{\partial\Omega_{mf}}{\partial\mu}\right)_{L^2,T}$$
(18)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □

we obtain the equation for the total number of fermions

$$N = \sum_{\mathbf{k}} \left(1 - \frac{\xi_k}{E_{\mathbf{k}}} \tanh\left(\beta E_{\mathbf{k}}/2\right) \right) . \tag{19}$$

Moreover, the equation for the T = 0 number of quasi-condensed fermionic atoms⁷ reads

$$N_0 = 2 \int d^2 \mathbf{r} \ d^2 \mathbf{r}' \ |\langle \psi_{\downarrow}(\mathbf{r}) \ \psi_{\uparrow}(\mathbf{r}') \rangle|^2 = \sum_{\mathbf{k}} \frac{\Delta_0^2}{2E_k^2} \tanh\left(\beta E_{\mathbf{k}}/2\right).$$
(20)

⁷LS, N. Manini, A. Parola, Phys. Rev. A **72**, 023621 (2005).

Zero-temperature properties (I)

At T = 0 the grand potential is given by

$$\Omega_{mf} = -\frac{m}{4\pi\hbar^2} L^2 \left(\mu^2 + \mu \sqrt{\mu^2 + \Delta_0^2}\right) , \qquad (21)$$

where the chemical potential μ reads

$$\mu = \epsilon_F - \frac{1}{2} \epsilon_B , \qquad (22)$$

with $\epsilon_F=\pi\hbar^2 n/m$ the 2D Fermi energy, and the gap parameter Δ_0 is instead

$$\Delta_0 = \sqrt{2\epsilon_F \epsilon_B} \ . \tag{23}$$

In addition, we find 8 this nice formula for the condensate fraction

$$\frac{N_0}{N} = \frac{1}{2} \frac{\frac{\pi}{2} + \arctan\left(\frac{\mu}{\Delta}\right)}{\frac{\mu}{\Delta} + \sqrt{1 + \frac{\mu^2}{\Delta^2}}} .$$
(24)

⁸LS, Phys. Rev. A 76, 015601 (2007).

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 少へ⊙

Zero-temperature properties (II)

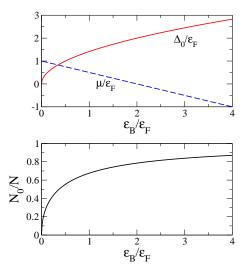


Figure: Upper panel: chemical potential μ and energy gap Δ_0 as a function of the binding energy ϵ_B of pairs. Lower panel: Bose-condensate fraction N_0/N of fermionic atoms as a function of the binding energy ϵ_B of pairs.

200

Zero-temperature properties (III)

According to Landau⁹ the first sound velocity c_s is given by

$$m c_s^2 = \left(\frac{\partial P}{\partial n}\right)_{L^2,\bar{S}}$$
, (25)

where *P* is the pressure and $\overline{S} = S/N$ is the entropy per particle of the superfluid. Moreover, at zero temperature it holds the following equality

$$\left(\frac{\partial P}{\partial n}\right)_{L^2,0} = n \left(\frac{\partial \mu}{\partial n}\right)_{L^2} \,. \tag{26}$$

Using the 2D zero-temperature mean-field result

$$\mu = \epsilon_F - \frac{1}{2} \epsilon_B , \qquad (27)$$

where $\epsilon_F = (\pi \hbar^2/m)n = m v_F^2/2$, we finally obtain

$$c_s = \frac{v_F}{\sqrt{2}} . \tag{28}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへ⊙

⁹L.D. Landau, Journal of Physics USSR 5, 71 (1941).

One can explicitly calculate the temperature T^* at which $\Delta_0 = 0$. In particular, one obtains¹⁰ the following equations

$$\mu(T^*) = k_B T^* \ln \left(e^{\epsilon_F / (k_B T^*)} - 1 \right), \qquad (29)$$

$$\epsilon_B = k_B T^* \frac{\pi}{\gamma} \exp \left(-\int_0^{\mu(T^*) / (2k_B T^*)} \frac{\tanh(u)}{u} \, du \right), \qquad (30)$$

which determine T^* and $\mu(T^*)$ as a function of the binding energy ϵ_B , with $\gamma = 1.781$.

¹⁰V.P. Gusynin, V.M. Loktev, and Sharapov, J. Exp. Theor. Phys. 88, 685 (1999).

Finite-temperature properties (II)

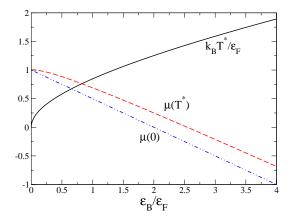


Figure: Critical temperature T^* (solid line), critical chemical potential $\mu(T^*)$ (dashed line), and zero-temperature chemical potential $\mu(0)$ as a function of the binding energy ϵ_B of pairs.

Let us now consider beyond mean-field effects. We have seen that the exact partition function can be written as

$$\mathcal{Z} = \int \mathcal{D}[\Delta, \bar{\Delta}] \quad \exp\left\{-S_{eff}[\Delta, \bar{\Delta}]/\hbar\right\}, \tag{31}$$

where $S_{eff}[\Delta, \overline{\Delta}]$ is the effective action, which is a functional of the complex bosonic auxiliary field $\Delta(\mathbf{r}, \tau)$ of pairing. We impose that

$$\Delta(\mathbf{r},\tau) = (\Delta_0 + \sigma(\mathbf{r},\tau)) \ e^{i\theta(\mathbf{r},\tau)} . \tag{32}$$

(日) (四) (문) (문) (문)

The partition function can be then formally written as

$$\mathcal{Z} = e^{-\beta\Omega_{mf}(\Delta_0)} \int \mathcal{D}[\sigma,\theta] \quad \exp\left\{-S_{bmf}[\sigma,\theta;\Delta_0]/\hbar\right\}.$$
(33)

Beyond mean-field (II)

Exanding $S_{bmf}[\sigma, \theta; \Delta_0]$ at the second order and functional-integrating over the amplitude field $\sigma(\mathbf{r}, \tau)$ one obtains¹¹

$$\mathcal{Z} = e^{-\beta\Omega_{mf}(\Delta_0)} \int \mathcal{D}[\theta] \quad \exp\left\{-S_{\theta}[\theta; \Delta_0]/\hbar\right\},$$
(34)

where

$$S_{\theta}[\theta; \Delta_0] = \int_0^{h\beta} d\tau \int_{L^2} d^2 \mathbf{r} \left\{ \frac{J}{2} (\nabla \theta)^2 + \frac{K}{2} (\partial_{\tau} \theta)^2 \right\}$$
(35)

is the action functional of the phase field (Goldstone field) with J the phase stiffness and K the phase susceptibility. At T = 0 we find

$$J = \frac{\epsilon_F}{4\pi} , \qquad \mathcal{K} = \frac{m}{4\pi} , \qquad (36)$$

and the velocity c_{θ} of the Goldstone field reads

$$c_{\theta} = \sqrt{\frac{J}{K}} = \frac{v_F}{\sqrt{2}} = c_s . \tag{37}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

¹¹A.M.J. Schakel, Ann. Phys. (N.Y.) 326, 193 (2011).

Beyond mean-field (III)

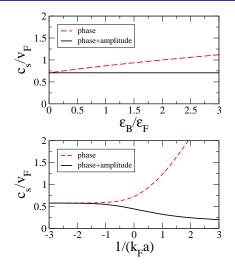


Figure: Upper panel: 2D scaled sound velocity c_s/v_F vs scaled binding energy ϵ_B/ϵ_F . Lower panel: 3D scaled sound velocity c_s/v_F vs scaled inverse interaction strength $1/(k_Fa)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

The renormalization-group theory¹² dictates that for our 2D system the superfluid density n_s is zero above the **Berezinskii-Kosterlitz-Thouless** critical temperature T_{BKT} . Moveover below T_{BKT} the superfluid density can be written as

$$n_s(T) = \frac{4m}{\hbar^2} J(T) \quad \text{for } T < T_{BKT} , \qquad (38)$$

and the critical temperature T_{BKT} can be estimated by solving self-consistently

$$k_B T_{BKT} = \frac{\pi}{2} J(T_{BKT}) , \qquad (39)$$

where J(T) is the finite-temperature stiffness of our action functional S_{θ} of the phase.

¹²H.T.C. Stoof, K.B. Gubbels, D.B.M. Dickerscheid, Ultracold Quantum Fields (Springer, Dordrecht, 2009).

Beyond mean-field (V)

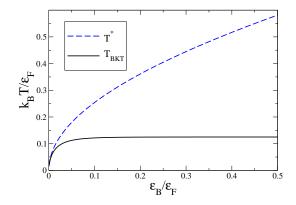


Figure: Dashed line: temperature T^* above which Δ_0 is zero; solid line: Berezinskii-Kosterlitz-Thouless critical temperature T_{BKT} .

< □ > < □ > < □ > < □ > < □ > < □ >

æ

Beyond mean-field (VI)

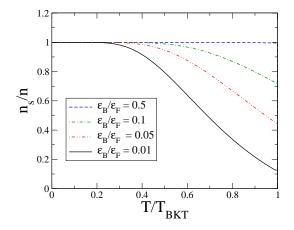


Figure: Superfluid fraction n_s/n as a function of the scaled temperature T/T_{BKT} for different values of the scaled binding energy ϵ_B/ϵ_F , where $\epsilon_F = (\hbar^2/m)\pi n$ is the Fermi energy. Above T_{BKT} one has $n_s = 0$.

There are several open problems regarding our 2D Fermi superfluid in the BCS-BEC crossover. Among them we mention:

▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー わらぐ

- first and second sound at finite temperature
- quasi-condensate at finite temperature
- beyond mean-field equation of state
- unbalanced system

THANK YOU FOR YOUR ATTENTION!

We acknowledge research grants from:

- Università di Padova: Progetto di Ricerca di Ateneo 2012-2013.
- Fondazione CARIPARO: Progetto di Eccellenza 2012-2013.
- MIUR: Progetto PRIN call 2011-2012.