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Unitary Fermi gas
Let us consider a gas of fermions with two spin components (o =1, ).
The system is dilute if the effective radius rg of the inter-atomic potential is

much smaller than the average interparticle separation d = n_1/3, namely

nr03<<1, (1)

where n = n4s +n is the total number density of the Fermi gas.

The unitarity regime of this dilute Fermi gas is the situation in which the
s-wave scattering length a of the inter-atomic potential greatly exceeds the
average interparticle separation d = n—1/3, thus

nla®>1. (2)

In few words, the unitarity regime of a dilute Fermi gas is characterized by

ro << n 3« al. (3)
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The many-body Hamiltonian of a two-component Fermi system is given by
p;
—Z( +U(rz)>—|—z ( J -I—U(rj))—l—ZV(rz—r), (4)
J=1 1,]

where U(r) is the external confining potential and V(r) is the inter-atomic
potential. Here we consider Ny = N, .

The inter-atomic potential of a dilute Fermi gas can be modelled by an
attractive square well potential:

wo-{ s

By varying the depth Vp of the potential one can change the value of the
s-wave scattering length a, which for this potential is given by

tan(rov/mVy/h)
a=1rg|1l— : (6)
rovmVp/h
For rg/mVy/h < /2 the potential does not support bound state and a < 0.

For ro/mVgo/h > w/2 appears a bound state of binding energy eg and a > 0.
At rov/mVp/h = n/2 one has eg = 0 and a = +oo.




For a dilute gas the unitarity limit corresponds to

a = to0. (7)
Under this condition the Fermi gas is called unitary Fermi gas.

The crossover from a BCS superfluid (a < 0) to a BEC of molecular pairs
(a > 0) has been investigated experimentally*, and it has been shown that
the unitary Fermi gas (Ja| = oo) exists and is (meta)stable.

The detection of quantized vortices under rotationT has clarified that the
unitary Fermi gas is superfluid.

The only length characterizing the uniform unitary Fermi gas is practically
the average distance between particles d = n~—1/3. In this case the energy per
particle must be

2
(i) =62 (3PP = D ep, (®)

with ep Fermi energy of the ideal gas and &£ a universal unknown parameter
(Monte Carlo calculations suggest £ ~ 0.4).

*K.M. O'Hara et al., Science 298, 2179 (2002).

fM.W. Zwierlein et al., Science 311, 492 (2006); M.W. Zwierlein et al., Nature (London)
442, 54 (2006)



Extended Thomas-Fermi density functional

The Thomas-Fermi (TF) energy functional® of the unitary Fermi gas trapped

by an external potential U(r) is

3 h?
E = / d3r n(r) |22 (372)23n(r)23 + Ur)| . (9)
52m
with n(r) the local density. The total number of fermions is
N = /d3r n(r) . (10)
By minimizing Epp one finds
h2
65— (322 Pn@)? P + U@ =7, (11)
m
with @ chemical potential of the non-uniform system. In this way
(2m)3/2 3/2
n(r) = —U(r : 12
(") = 33 eayara i~ U (12)

*S. Giorgini, L.P. Pitaevskii, and S. Stringari, Rev. Mod. Phys. 80, 1215 (2008).



The TF functional must be extended to cure the pathological TF behavior
at the surface.

We add to the energy per particle the term
h? (Vn)? \ h2 (V+/n)?

13
8m n2 2m n (13)

A

Historically, this term was introduced by von Weizsacker* to treat surface
effects in nuclei. Here we consider A as a phenomenological parameter ac-
counting for the increase of kinetic energy due the spatial variation of the
density.

There are also multi-orbital density functionals for unitary Fermi gas:

— the Kohn-Sham density functional of Papenbrock,

Phys. Rev. A 72, 041603 (2005);

— the Bogoliubov-de Gennes superfluid local-density approximation (SLDA)
of Bulgac, Phys. Rev. A 76, 040502(R) (2007).

*C.F. von Weizsacker, Z. Phys. 96, 431 (1935).



The new energy functional, that is the extended Thomas-Fermi (ETF) func-
tional of the unitary Fermi gas, reads

2 n(r))2 2
B= [d* n(r)[ hm(vn(())z) +5§§—m<3w2)2/3n<r>2/3+U(r>} . (14)

By minimizing the ETF energy functional one gets:

2
[ /\h—v +é— <3w2>2/3n<r>2/3+v<r>] Jn@) =g Jn(r).  (15)

This is a sort of stationary 3D nonlinear Schrodinger equation (NLSE).

To determine ¢ and A we look for the values of the two parameters which
lead to the best fit of the ground-state energies obtained with the fixed-node
diffusion Monte Carlo (FNDMC) method* in a harmonic trap U(r) = mw?r?/2.
After a systematic analysis [L.S. and F. Toigo, Phys. Rev. A 78, 053626
(2008)] we find

& = 0.455 and A=0.13

as the best fitting parameters in the unitary regime (A. Perali, P. Pieri, and
G.C. Strinati, PRL 93, 100404 (2004) got the same &). See the next figure.

*J von Stecher, C.H. Greene and D. Blume, Phys. Rev. A 77 043619 (2008)



80 | T | T | T | T | T

60

LLI 40

+  FNDMC
—.— TE(LDA)

20 — ETF

N O I M T A NI O NE
4 6 8 10 12 14 16 18 20 22 24 26 28 30

N

Ground-state energy E for the unitary Fermi gas of N atoms under harmonic
confinement of frequency w. Energy in units of hw. [Adapted from L.S. and
F. Toigo, Phys. Rev. A 78, 053626 (2008)]



Having determined the parameters £ and A we can now use our single-orbital
density functional to calculate various properties of the trapped unitary Fermi
gas.

We calculate numerically (by solving with a finite-difference Crank-Nicolson
method the stationary 3D NLSE) the density profile n(r) of the gas in a
iIsotropic harmonic trap

U(r) = %mwz(ac2 + 2 + 22) . (16)

We compare our results with those obtained by Doerte Blume* with her
FNDMC code. For completeness we consider also the density profiles obtained
by Aurel Bulgac’ using his multi-orbital density functional (SLDA).

*D. Blume, J. von Stecher, C.H. Greene, Phys. Rev. Lett. 99, 233201 (2007); J. von
Stecher, C.H. Greene and D. Blume, Phys. Rev. A 77 043619 (2008); D. Blume, unpub-
lished.

fA. Bulgac, Phys. Rev. A 76, 040502(R) (2007).
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Unitary Fermi gas under harmonic confinement of frequency w. Density
profiles n(r) for N (even) fermions obtained with our ETF (solid lines),
Bulgac's SLDA (dashed lines) and FNDMC (circles). Lengths in units of
ag = \/h/(mw). [L.S., F. Ancilotto and F. Toigo, Laser Phys. Lett. 7, 78
(2010).]
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Zoom of the density profile n(r) for N = 20 fermions near the surface obtained
with our ETF (solid lines), Bulgac’'s SLDA (circles) and FNDMC (circles).

Lengths in units of ay = \/h/(mw). [L.S., F. Ancilotto and F. Toigo, Laser
Phys. Lett. 7, 78 (2010).]




Extended superfluid hydrodynamics

Let us now analyze the effect of the gradient term on the dynamics of the
superfluid unitary Fermi gas.

At zero temperature the low-energy collective dynamics of this fermionic
gas can be described by the equations of extended™* irrotational and inviscid

hydrodynamics:

g—j+v-<nv>=o, (17)
0 [? V2y/n . m o _
may V=M S (i) + U + Do) =0, (18)

where u(n; &) = fep is the bulk chemical potential, with ep = h2(372n)2/3/(2m)
the Fermi energy.

They are the simplest extension of the equations of superfluid hydrodynamics
of fermions’, where \ = 0.

*Quantum hydrodynamics of electrons: N. H. March and M. P. Tosi, Proc. R. Soc. A 330,
373 (1972); E. Zaremba and H.C. Tso, PRB 49, 8147 (1994).

fS. Giorgini, L.P. Pitaevskii, and S. Stringari, Rev. Mov. Phys. 80, 1215 (2008).



The extended hydrodynamics equations can be written in terms of a time-
dependent NLSE, which is Galilei-invariant.}

In fact, by introducing the complex wave function

o(r,t) = \/n(r,t) T (19)

which is normalized to the total number N of superfluid atoms, and taking
into account the correct phase-velocity relationship

V(1) = 2 VOr, 1) (20)

where 6(r,t) is the phase of the condensate wavefunction of Cooper pairs,
the equation

R h2 V2|1
Zh&‘p_[_ﬁ am o 1Y, (21)

is strictly equivalent to the equations of extended hydrodynamics.

V2420 (r) 4+ 2u(|]%; &) + (1 — 4))

'F. Guerra and M. Pusterla, Lett. Nuovo Cim. 34, 351 (1982); H.-D. Doebner and G.A.
Goldin, Phys. Rev. A 54, 3764 (1996).



Sound velocity and collective modes

From the equations of superfluid hydrodynamics one finds the dispersion
relation of low-energy collective modes of the uniform (U(r) = 0) unitary
Fermi gas in the form

2=c1 q, (22)

where €2 is the collective frequency, ¢ is the wave number and

c1 = \/gvp (23)

is the first sound velocity, with vp = QGWF is the Fermi velocity of a nonin-

teracting Fermi gas.

The equations of extended superfluid hydrodynamics (or the superfluid NLSE)
give [L.S. and F. Toigo, Phys. Rev. A 78, 053626 (2008)] also a correcting
term, i.e.

3\, h
Q=01q\/l+ (=—1)?, (24)
£ 2mup

which depends on the ratio \/&.



In the case of harmonic confinement

U(r) = %mwQ'rQ (25)

we study numerically the collective modes of the unitary Fermi gas by in-
creasing the number N of atoms.

By solving the superfluid NLSE we find that the frequency 2g of the monopole

mode (I = 0) and the frequency 21 dipole mode (I = 1) do not depend on
N:

Qo = 2w and QL =w, (26)
as predicted by Y. Castin [Comptes Rendus Physique 5, 407 (2004)].

We find instead that the frequency <2» of the quadrupole (I = 2) mode
depends on N and on the choice of the gradient coefficient .



1.5%~ -

1.481 \\\ —

1.46

Qzloo

1.44

1.42

Quadrupole frequency 25 of the unitary Fermi gas (¢ = 0.455) with N atoms
under harmonic confinement of frequency w. Three different values of the
gradient coefficient \. For A =0 (TF limit): Q2o = +v2w. [L.S., F. Ancilotto
and F. Toigo, Laser Phys. Lett. 7, 78 (2010).]



Low-temperature thermodynamics

We model the many-body quantum Hamiltonian H of the uniform unitary
Fermi gas with the simple effective Hamiltonian

Hepp=Eo+ Y ecor(q) bbg+2 esp(p) & p , (27)
q p
where
3
Eg = gﬁNGF (28)
IS the ground-state energy,
>\ 3
ecol(q) = \/ciq” + . 2q c1q+ 3 o (29)
is the energy of the bosonic collective excitations, and
p? 2 2 1 2
esp(p) = \|(z— —Cep)* + Aj ~ Ag+ —(p — po) (30)
2m 2mg

iIs the energy of the fermionic single-particle excitations, with
A
mo = e and po = v/2mp = (M ?pp.




The Helmholtz free energy F of a thermodynamic system with Hamiltonian

H,.s is given by
F = —kgTIn {T'r[e_ﬁeff/ kBT]} .
For the uniform unitary Fermi gas in a volume V we find

F = Fg+ Feop+ Fsp

where

Fy 3

v T gtner

IS the free energy of the ground-state,

Feol ™2 (kBT)4 + A (kBT)6

1% 90 (hep)3 756 (hcl)3(mc%)2
IS the free energy of the bosonic collective excitations, and

Fsp 4p3(mokpT)t/? —No/kgT
= —kgT e B
V (27r)3/2h3

IS the free energy of fermionic single-particle excitations.

(31)

(32)

(33)

(34)

(35)



In our low-temperature thermodynamics (LTT) the total Helmholtz free en-
ergy F' of the low-temperature unitary Fermi gas can be then written as

T
F=N6FCD<—> : (36)
Ir
where N is the total number of atoms in the unitary gas and ®(z) is a function

of the scaled temperature x =T /Tg, with Tp = er/kp, given by
7T4\/§ gc4 —I— )\7‘(‘63\/§ 3;'6 B 3‘\/ 27TC1/2A,'1/25C3/26_1/$
80 ¢3/2 896 ¢7/2 2 | ’

where v = Ag/er. From the Helmholtz free energy F' we can easily obtain all
the thermodynamic functions. For instance, the chemical potential

(37)

() = 26 -

OF
— [ , 38
H <3N)T,V (38)
the entropy
S =_ (8—F) | (39)
OT'/ N,V

the internal energy

E=F+4+TS. (40)
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Internal energy E of the unitary Fermi gas as a function of the temperature
T. Circles: Monte Carlo results of A. Bulgac, J.E. Drut, and P. Magierski,
PRL 99, 120401 (2007). Squares: Experimental data of M. Horikoshi, S.
Nakajima, M. Ueda, and T. Mukaiyama, Science 327, 442 (2010). [L.S. and
F. Toigo, very preliminary results.]



Chemical potential £ and heat capacity C, of the unitary Fermi gas as a
function of the temperature T'. Dashad line: ST with X = 0. Solid line: ST
with A = 0.27. Circles: Monte Carlo results of A. Bulgac, J.E. Drut, and
P. Magierski, PRL 99, 120401 (2007). [L.S. and F. Toigo, very preliminary
results.]



Conclusions

We have introduced an extended Thomas-Fermi (ETF) functional for the
trapped unitary Fermi gas.

ETF functional be used to study ground-state density profiles in a generic
external potential U(r).

Extended superfluid hydrodynamics can be applied to investigate collective
modes of the unitary gas in a generic external potential U(r).

Low-temperature thermodynamics can be obtained by using the zero-
temperature elementary excitations.



