
Finite-Size Effects in the 2D BCS-BEC Crossover

Luca Salasnich

Dipartimento di Fisica e Astronomia “Galileo Galilei” and Padua QTech, Università di Padova
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2D Fermi gas in the BCS-BEC crossover (I)

Twenty years ago the 3D BCS-BEC crossover has been observed with
ultracold gases made of two-component fermionic 40K or 6Li
atoms.1

This crossover is obtained using a Fano-Feshbach resonance to change
the 3D s-wave scattering length aF of the inter-atomic potential.

1C.A. Regal et al., PRL 92, 040403 (2004); M.W. Zwierlein et al., PRL 92, 120403
(2004); J. Kinast et al., PRL 92, 150402 (2004).



2D Fermi gas in the BCS-BEC crossover (II)

Ten years ago also the 2D BEC-BEC crossover has been achieved
experimentally2 with a Fermi gas of two-component 6Li atoms.

Contrary to the 3D case, 2D realistic interatomic attractive potentials
have always a bound state. In particular, the binding energy εB > 0 of
two fermions is related to the 2D scattering length aF by

εB =
4

e2γ

~2

maF 2
, (1)

where γ = 0.577 is the Euler-Mascheroni constant. Moreover, the
attractive (negative) interaction strength g of s-wave pairing is related to
the binding energy by the expression3

− 1

g
=

1

2L2

∑
k

1
~2k2

2m + 1
2εB

. (2)

2V. Makhalov et al. PRL 112, 045301 (2014); M.G. Ries et al., PRL 114, 230401
(2015); I. Boettcher et al., PRL 116, 045303 (2016); K. Fenech et al., PRL 116,
045302 (2016).

3M. Randeria, J-M. Duan, and L-Y. Shieh, PRL 62, 981 (1989).



2D Fermi gas in the BCS-BEC crossover (III)

To study the 2D BCS-BEC crossover we adopt the formalism of
functional integration4. The partition function Z of the uniform system
with fermionic fields ψs(r, τ) at temperature T , in a 2-dimensional
volume L2, and with chemical potential µ reads

Z =

∫
D[ψs , ψ̄s ] exp

{
−S

~

}
, (3)

where (β ≡ 1/(kBT ) with kB Boltzmann’s constant)

S =

∫ ~β

0

dτ

∫
L2

d2r L (4)

is the Euclidean action functional with Lagrangian density

L = ψ̄s

[
~∂τ −

~2

2m
∇2 − µ

]
ψs + g ψ̄↑ ψ̄↓ ψ↓ ψ↑ (5)

where g is the attractive strength (g < 0) of the s-wave coupling.
4S. S. Botelho and C. A. R. Sa de Melo, PRL 96, 040404 (2006)



2D Fermi gas in the BCS-BEC crossover (IV)

Through the usual Hubbard-Stratonovich transformation the Lagrangian
density L, quartic in the fermionic fields, can be rewritten as a quadratic
form by introducing the auxiliary complex scalar field ∆(r, τ). In this way
the effective Euclidean Lagrangian density reads

Le = ψ̄s

[
~∂τ −

~2

2m
∇2 − µ

]
ψs + ∆̄ψ↓ ψ↑ + ∆ψ̄↑ ψ̄↓ −

|∆|2

g
. (6)

We investigate the effect of fluctuations of the pairing field ∆(r, t)
around its mean-field value ∆0 which may be taken to be real. For this
reason we set

∆(r, τ) = ∆0 + η(r, τ) , (7)

where η(r, τ) is the complex field which describes pairing fluctuations.



2D Fermi gas in the BCS-BEC crossover (V)

In particular, we are interested in the grand potential Ω, given by

Ω = − 1

β
ln (Z) ' − 1

β
ln (ZmfZg ) = Ωmf + Ωg , (8)

where

Zmf =

∫
D[ψs , ψ̄s ] exp

{
−Se(ψs , ψ̄s ,∆0)

~

}
(9)

is the mean-field partition function and

Zg =

∫
D[ψs , ψ̄s ]D[η, η̄] exp

{
−Sg (ψs , ψ̄s , η, η̄,∆0)

~

}
(10)

is the partition function of Gaussian pairing fluctuations.



2D Fermi gas in the BCS-BEC crossover (VI)

After functional integration over quadratic fields, one finds that the
mean-field grand potential5 reads

Ωmf = −∆2
0

g
L2 +

∑
k

(
~2k2

2m
− µ− Esp(k)− 2

β
ln (1 + e−β Esp(k))

)
(11)

where

Esp(k) =

√(
~2k2

2m
− µ

)2

+ ∆2
0 (12)

is the spectrum of fermionic single-particle excitations.

5J. Tempere, S. N. Klimin, J. T. Devreese, PRA 79, 053637 (2009).



2D Fermi gas in the BCS-BEC crossover (VII)

The Gaussian grand potential is instead given by

Ωg =
1

2β

∑
Q

ln det(M(Q)) , (13)

where M(Q) is the inverse propagator of Gaussian fluctuations of pairs
and Q = (q, iΩm) is the 4D wavevector with Ωm = 2πm/β the
Matsubara frequencies and q the 2D wavevector.6

The sum over Matsubara frequencies is quite complicated and it does not
give a simple expression. An approximate formula is

Ωg '
1

2

∑
q

Ecol(q) +
1

β

∑
q

ln (1− e−β Ecol (q)) , (14)

where
Ecol(q) = ~ ω(q) (15)

is the spectrum of bosonic collective excitations with ω(q) derived from

det(M(q, ω)) = 0 . (16)

6H. Kurkjian, S.N. Klimin, J. Tempere, and Y. Castin, PRL 122, 09340 (2019).



2D Fermi gas in the BCS-BEC crossover (VIII)

In our approach, given the grand potential

Ω(µ, L2,T ,∆0) = Ωmf (µ, L2,T ,∆0) + Ωg (µ, L2,T ,∆0) , (17)

the energy gap ∆0 is obtained from the gap equation

∂Ωmf (µ, L2,T ,∆0)

∂∆0
= 0 . (18)

The number density n is instead obtained from the number equation

n = − 1

L2

∂Ω(µ, L2,T ,∆0(µ,T ))

∂µ
(19)

taking into account the gap equation, i.e. that ∆0 depends on µ and T :
∆0(µ,T ).



2D Fermi gas in the BCS-BEC crossover (IX)

MF EOS

GPF EOS

Bosonic limit
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Zero-temperature scaled pressure P/Pid vs scaled binding energy εB/εF . Notice
that P = −Ω/L2 and Pid is the pressure of the ideal 2D Fermi gas. Filled
circles with error bars: experimental data of Makhalov et al. 7. Solid line: our
regularized Gaussian theory.8 Figure adapted from G. Bighin and LS, PRB 93,
014519 (2016).

7V. Makhalov et al. PRL 112, 045301 (2014).
8See also L. He, H. Lu, G. Cao, H. Hu and X.-J. Liu, PRA 92, 023620 (2015).



Superfluid density and BKT (I)

We are now interested on the temperature dependence of superfluidy
density ns(T ) of the system.
At the Gaussian level ns(T ) depends only on fermionic single-particle
excitations Esp(k).9 Beyond the Gaussian level also bosonic collective
excitations Ecol(q) contribute.10

Thus, we assume the following Landau-type formula for the superfluid
density11

ns(T ) = n−β
∫

d2k

(2π)2
k2 eβEsp(k)

(eβEsp(k) + 1)2
− β

2

∫
d2q

(2π)2
q2 eβEcol (q)

(eβEcol (q) − 1)2
.

(20)

Clearly, this bare superfluid density must be renormalized using the flow
equations of Kosterlitz-Thouless-Nelson, which take into account the
effect of quantized vortices and anti-vortices.

9E. Babaev and H.K. Kleinert, PRB 59, 12083 (1999).
10L. Benfatto, A. Toschi, and S. Caprara, PRB 69, 184510 (2004).
11G. Bighin and LS, Phys. Rev. B 93, 014519 (2016).



Superfluid density and BKT (II)

The analysis of Kosterlitz and Thouless12 applied to 2D superfluids
shows that:

As the temperature T increases vortices start to appear in
vortex-antivortex pairs.

The pairs are bound at low temperature until at the
Berezinskii-Kosterlitz-Thouless critical temperature Tc = TBKT an
unbinding transition occurs above which a proliferation of free
vortices and antivortices is predicted.

The superfluid density ns(T ) is renormalized by the presence of
vortex-antivortex pairs.

The renormalized superfluid density ns,R(T ) decreases by increasing
the temperature T and jumps to zero at Tc = TBKT .

12J.M. Kosterlitz and D.J. Thouless, J. Phys. C 6, 1181 (1973).



Superfluid density and BKT (III)

We have seen that the renormalized superfluid density ns,R(T ) jumps to
zero at a critical temperature TBKT .
Moreover, one finds the Nelson-Kosterlitz condition13

kBTBKT =
~2π

8m
ns,R(T−BKT ) . (21)

Often the following Nelson-Kosterlitz criterion is adopted

kBTBKT =
~2π

8m
ns(TBKT ) , (22)

with ns(T ) instead of ns,R(T ). In this way one gets an approximated14

TBKT without the effort of calculating the renormalized superfluid density
ns,R(T ).

13D.R. Nelson and J.M. Kosterlitz, Phys Rev. Lett. 39, 1201 (1977).
14An improved approach based on the RG equations of Kosterlitz and Thouless can

be found in G. Bighin and LS, Sci. Rep. 7, 45702 (2017).



Superfluid density and BKT (IV)

Our theoretical predictions15 for the Berezinskii-Kosterlitz-Thouless critical
temperature TBKT compared to experimental observation16 (filled circles with
error bars).

15G. Bighin and LS, Phys. Rev. B 93, 014519 (2016).
16P.A. Murthy et al., PRL 115, 010401 (2015).



Superfluid density and BKT (V)

First sound velocity u1 (red solid line) and second sound velocity u2 (blue
dashed line) along the BCS-BEC crossover, at temperature T/TF = 0.01, with
TF = εF/kB and vF =

√
2εF/m. Green points: measurements of the first

sound [M. Bohlen et al. PRL 124, 240403 (2020).] Right inset: relative
contribution to the density response of u1 (red solid line) and u2 (blue dashed
line). Figure adapted from A. Tononi, A. Capellaro, G. Bighin, and LS, PRA
103, L061303 (2021).



Finite-size effects (I)

Finite-size effects are included through an infrared cutoff

kmin =
2π

L
(23)

in the wavenumber k of the quantum particle of mass m with L the size
of the confined system. We consider a box confinement such that

εmin =
~2kmin

2m
(24)

is the lowest single-particle energy of the non-interacting Schrödinger
problem.
From the gap equation, in presence of the cutoff, we get

∆0 =
√
ε2
B + 2(εmin + µ)εB (25)

where εB is the binding energy and µ is the chemical potential, obtained
by solving the number equation at the mean-field level supplemented by
the Gaussian contribution.



Finite-size effects (II)

3 2 1 0 1 2 3
ln( B/ F)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

/
F

L n = 5
L n = 10
L n = 100
L n =

In the panel we show ∆0/εF versus εB/εF for different values of the cutoff,
respectively L

√
n=5 (blue squared points), 10 (red triangled points), 100

(green rounded points) and ∞ (black plus points). Here L = 2π/kmin with kmin

the infrared cutoff while
√
n = 1/d , with d inter-particle distance. In this way,

L
√
n is an adimensional quantity. Figure adapted from M. Lanaro, G. Bighin,

L. Dell’Anna, and LS, PRB 109, 104511 (2024).



Finite-size effects (III)
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respectively L

√
n=5 (blue squared points), 10 (red triangled points), 100

(green rounded points) and ∞ (black plus points). We have also included
(dashed line) the mean-field chemical potential µ. Figure adapted from M.
Lanaro, G. Bighin, L. Dell’Anna, and LS, PRB 109, 104511 (2024).



Finite-size effects (IV)

0.00 0.02 0.04 0.06 0.08 0.10 0.12
T/TF

0.0

0.2

0.4

0.6

0.8

1.0

n s
/n

L n = 5
L n = 10
L n = 100
L n =

0.07 0.08 0.09 0.10
0.0

0.2

0.4

(Main plot) The superfluid density ns/n versus T/TF at fixed value of
ln (εB/εF ) = 0.92, for L

√
n=5 (blue dashed line), 10 (red solid line), 100 (green

dashed-dotted line) and ∞ (black dotted line). (Inset) Zoom of the main plot.
The inflection points of the superfluid density are depicted by round points
while the triangular points are placed at the intersections of the slope at the
inflection points with the T -axis. Figure adapted from M. Lanaro, G. Bighin, L.
Dell’Anna, and LS, PRB 109, 104511 (2024).



Finite-size effects (V)
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The critical temperature obtained through the intersection between the tangent
to the superfluid density at the inflection point and the horizontal line
ns/n = 0, i.e. (TBKT/TF )c1 against ln (εB/εF ). Figure adapted from M.
Lanaro, G. Bighin, L. Dell’Anna, and LS, PRB 109, 104511 (2024).



Conclusions

In the BCS-BEC crossover of the 2D Fermi gas, to get a good
agreement with experimental data for the equation of state, the
critical temperature TBKT , and the sound modes, both fermionic
single-particle excitations and bosonic collective excitations are
needed.

The finite size has been introduced through an infrared cutoff in
momentum space. Setting a minimum value to the wave-vector
corresponds, indeed, to setting a maximum value to the
wave-length, which is the size of the system.

We have analyzed the effects of the finite size in several
thermodynamic properties, such as the chemical potential, the
energy gap and the superfluid density, going beyond the mean-field
level by including Gaussian quantum fluctuations.

We have also identified the putative Berezinskii-Kosterlitz-Thouless
(BTK) phase transition at finite size.
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