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BCS-BEC equations and condensate fraction (I)

In 2004 the BCS-BEC crossover has been observed with ultracold gases

made of fermionic 40K and 6Li alkali-metal atoms.1

This crossover is obtained by changing (with a Feshbach resonance) the
s-wave scattering length a of the inter-atomic potential:
– a → 0− (BCS regime of weakly-interacting Cooper pairs)
– a → ±∞ (unitarity limit of strongly-interacting Cooper pairs)
– a → 0+ (BEC regime of bosonic dimers)

1C.A. Regal et al., PRL 92, 040403 (2004); M.W. Zwierlein et al., PRL 92, 120403
(2004); M. Bartenstein, A. Altmeyer et al., PRL 92, 120401 (2004); J. Kinast et al.,
PRL 92, 150402 (2004).



BCS-BEC equations and condensate fraction (II)

The crossover from a BCS superfluid (a < 0) to a BEC of molecular pairs
(a > 0) has been investigated experimentally around a Feshbach
resonance, where the s-wave scattering length a diveges, and it has been
shown that the system is (meta)stable.
The detection of quantized vortices under rotation2 has clarified that this
dilute gas of ultracold atoms is superfluid.
Usually the BCS-BEC crossover is analyzed in terms of

y =
1

kFa
(1)

the inverse scaled interaction strength, where kF = (3π2n)1/3 is the
Fermi wave number and n the total density.
The system is dilute because rekF ≪ 1, with re the effective range of the
inter-atomic potential.

2M.W. Zwierlein et al., Science 311, 492 (2006); M.W. Zwierlein et al., Nature
442, 54 (2006)



BCS-BEC equations and condensate fraction (III)

The shifted Hamiltonian of the uniform two-spin-component Fermi

superfluid is given by

Ĥ ′ =

∫

d3r
∑

σ=↑,↓

ψ̂+
σ (r)

(

−
~

2

2m
∇2 − µ

)

ψ̂σ(r) (2)

+ g ψ̂+
↑ (r) ψ̂+

↓ (r) ψ̂↓(r) ψ̂↑(r) ,

where ψ̂σ(r) is the field operator that annihilates a fermion of spin σ in
the position r, while ψ̂+

σ (r) creates a fermion of spin σ in r. Here g < 0
is the strength of the attractive fermion-fermion interaction.



BCS-BEC equations and condensate fraction (IV)

The ground-state average of the number of fermions reads

N =

∫

d3r
∑

σ=↑,↓

〈 ψ̂+
σ (r) ψ̂σ(r) 〉 . (3)

This total number N is fixed by the chemical potential µ which appears
in Eq. (2).
In a Fermi system the largest eigenvalue N0 of the two-body density
matrix gives the number of fermion pairs which have their center of mass
with zero linear momentum. This condensed number of pairs is given by

N0 = 2

∫

d3r1 d3r2 |〈 ψ̂↓(r1) ψ̂↑(r2) 〉|
2 . (4)



BCS-BEC equations and condensate fraction (V)

Within the Bogoliubov approach the shifted Hamiltonian (2) can be
diagonalized by using the Bogoliubov-Valatin representation of the field
operator ψ̂σ(r) in terms of the anticommuting quasi-particle Bogoliubov
operators b̂kσ with amplitudes uk and vk and the quasi-particle energy Ek.
In this way one finds familiar expressions for these quantities:

Ek =
[

(ǫk − µ)2 + ∆2
]1/2

(5)

and

u2
k = (1 + (ǫk − µ)/Ek) /2 (6)

v2
k = (1 − (ǫk − µ)/Ek) /2 , (7)

where ǫk = ~
2k2/(2m) is the single-particle energy.



BCS-BEC equations and condensate fraction (VI)

The parameter ∆ is the pairing gap, which satisfies the gap equation

−
1

g
=

1

Ω

∑

k

1

2Ek

, (8)

where Ω is the volume of the uniform system. Notice that this equation
is ultraviolet divergent and it must be regularized.
The equation for the total density n = N/Ω of fermions is obtained from
Eq. (3) as

n =
2

Ω

∑

k

v2
k . (9)

Finally, from Eq. (4) one finds that the condensate density n0 = N0/Ω of
paired fermions is given by3

n0 =
2

Ω

∑

k

u2
kv

2
k . (10)

3L.S., N. Manini, A. Parola, PRA 72, 023621 (2005).



Results for 3D ultracold atoms (I)

In three dimensions, a suitable regularization4 of the gap equation is
obtained by introducing the inter-atomic scattering length a via the
equation

−
1

g
= −

m

4π~2a
+

1

Ω

∑

k

m

~2k2
, (11)

and then subtracting this equation from the gap equation (8). In this
way one obtains the three-dimensional regularized gap equation

−
m

4π~2a
=

1

Ω

∑

k

(

1

2Ek

−
m

~2k2

)

, (12)

which can be used to study the full BCS-BEC crossover5 by changing the
amplitude and sign of the s-wave scattering length a.

4Marini, Pistolesi, and Strinati, Eur. Phys. J. B 1, 151 (1998).
5D.M. Eagles, PR 186, 456 (1969); A.J. Leggett, in Modern Trends in the Theory

of Condensed Matter, p. 13, edited by A. Pekalski and J. Przystawa (Springer, Berlin,
1980).



Results for 3D ultracold atoms (II)

Taking into account the functional dependence of the amplitudes uk and
vk on µ and ∆, one finds6 the condensate density

n0 =
m3/2

8π~3
∆3/2

√

µ

∆
+

√

1 +
µ2

∆2
. (13)

By the same techniques, also the two BCS-BEC equations can be written
in a more compact form as

−
1

a
=

2(2m)1/2

π~3
∆1/2 I1

( µ

∆

)

, (14)

n =
(2m)3/2

2π2~3
∆3/2 I2

( µ

∆

)

, (15)

where I1(x) and I2(x) are two monotonic functions which can be
expressed in terms of elliptic integrals7.

6L.S., N. Manini, A. Parola, PRA 72, 023621 (2005).
7Marini, Pistolesi, and Strinati, Eur. Phys. J. B 1, 151 (1998).



Results for 3D ultracold atoms (III)

Figure: Condensate fraction of pairs as a function of the inverse interaction
strength y = 1/(kFa): our mean-field theory (solid line); Fixed-Node Diffusion
Monte Carlo results (symbols) [G. E. Astrakharchik et al., PRL 95, 230405
(2005)]; Bogoliubov quantum depletion of a Bose gas with am = 0.6a (dashed
line); BCS theory (dot-dashed line).



Results for 2D ultracold atoms (I)

Contrary to the three-dimensional case, in two dimensions quite generally
a bound-state energy ǫB exists for any value of the interaction strength
g between atoms. For the contact potential the bound-state equation is

−
1

g
=

1

Ω

∑

k

1
~2k2

2m
+ ǫB

, (16)

and then subtracting this equation from the gap equation (8) one obtains
the two-dimensional regularized gap equation8

∑

k

(

1
~2k2

2m
+ ǫB

−
1

2Ek

)

= 0 . (17)

8Marini, Pistolesi, and Strinati, Eur. Phys. J. B 1, 151 (1998); M. Wouters, J.
Tempere, J.T. Devreese, PRA 70, 013616 (2004).



Results for 2D ultracold atoms (II)

In 2D we obtain9 a remarkably simple formula for the condensed fraction

n0

n
=

1

4

π
2 + arctan ( µ

∆)

µ
∆ +

√

1 + µ2

∆2

. (18)

Nicely, in this equation the condensate fraction depends only on the
parameter x0 = µ/∆. Indeed, all quantities scaled in units of the Fermi
energy ǫF depend only on the parameter x0. In particular, one finds

ǫB
ǫF

= 2

√

1 + x2
0 − x0

√

1 + x2
0 + x0

, (19)

∆

ǫF
= 2

(

√

1 + x2
0 − x0

)

, (20)

and also
µ

ǫF
= 2x0

(

√

1 + x2
0 − x0

)

. (21)

9L.S, PRA 76, 015601 (2007).



Results for 2D ultracold atoms (III)
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Figure: Energy gap ∆ (solid line) and chemical potential µ (dashed line) in the
uniform two-component dilute 2D Fermi gas as a function of scaled
bound-state energy ǫB/ǫF . The horizontal dotted line simply shows the zero.



Results for 2D ultracold atoms (IV)
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Figure: Condensate fraction n0/n of Fermi pairs (solid line) in the uniform
two-component dilute 2D Fermi gas as a function of scaled bound-state energy
ǫB/ǫF . The horizontal dotted line shows the asymptotic value n0/n = 1/2.



Neutron matter (I)

The neutron matter is a dense Fermi liquid made of two-component
(spin up and down) neutrons. The shifted Hamiltonian of the uniform
neutron matter can be written as

Ĥ ′ =

∫

d3r
∑

σ=↑,↓

ψ̂+
σ (r)

(

−
~

2

2m
∇2 − µ

)

ψ̂σ(r) (22)

+

∫

d3r d3r′ ψ̂+
↑ (r) ψ̂+

↓ (r′) V (r − r′) ψ̂↓(r
′) ψ̂↑(r) ,

where ψ̂σ(r) is the field operator that annihilates a neutron of spin σ in
the position r, while ψ̂+

σ (r) creates a neutron of spin σ in r. Here
V (r − r′) is the nutron-neutron potential characterized by s-wave
scattering length a = −18.5 fm and effective range re = 2.7 fm.



Neutron Matter (II)

One can apply the familiar Bogoliubov approach to diagonalize the
effective quadratic Hamiltonian, but now the paring gap ∆k depends
explcitly on the wave number k and satisfies the integral equation

∆q =
∑

k

Vqk

∆k

2Ek

, (23)

where
Vqk = 〈q,−q|V |k,−k〉 (24)

is the wave-number representation of the neutron-neutron potential, and

Ek =

√

(

~2k2

2m
− µ

)2

+ |∆k|2 . (25)



Neutron matter (III)

Under the simplifying assumptions

µ ≃ ǫF =
~

2

2m
(3π2n)2/3 , ∆k ≃ ∆ , (26)

in the continuum limit the gap equation of the neutron matter becomes

1 =
1

2

∫

d3k d3r

(2π)3
V (r) e ik·r

√

(~2k2

2m
− ǫF ) + ∆2

. (27)

Moreover, the number equation reads

n =
1

2

(2m)3/2

2π2~3
∆3/2 I2

(ǫF
∆

)

, (28)

where I2(x) is the monotonic function

I2(x) =

∫ +∞

0

y2

(

1 −
y2 − x

√

(y2 − x)2 + 1

)

dy . (29)



Neutron matter (IV)

In a similar way one gets the condensate density of neutron-neutron pairs

n0 =
m3/2

8π~3
∆3/2

√

ǫF
∆

+

√

1 +
ǫ2F
∆2

. (30)

These equations show that knowing the scaled energy gap ∆/ǫF one can
determine the condensate fraction

n0

n
=

π

25/2

√

ǫF

∆ +

√

1 +
ǫ2
F

∆2

I2(
ǫF

∆ )
(31)

Notice that in the deep BCS regime where ∆/ǫF ≪ 1 one finds

n0

n
=

3π

8

∆

ǫF
. (32)



Neutron matter (V)
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Figure: Scaled pairing gap ∆/ǫF vs Fermi wave number kF . Dashed line: BCS
limit; filled squares: results obtained with the G3RS nuclear potential [M.
Matsuo, PRC 73, 044309 (2006)]; filled circles: results obtained with the
Argone V18 nuclear potential [A. Gezerlis and J. Carlson, PRC 81, 025803
(2010)].



Neutron matter (VI)

Fitting the Matsuo data10 of ∆/ǫF vs kF we obtain the formula11

∆

ǫF
=

β0k
β1

F

exp(kβ2

F /β3) − β3

(33)

with the following fitting parameters:
β0 = 2.851, β1 = 1.942, β2 = 1.672, β3 = 0.276, β4 = 0.975.
By using this fitting formula and the simple equation

n0

n
=

π

25/2

√

ǫF

∆ +

√

1 +
ǫ2
F

∆2

I2(
ǫF

∆ )
(34)

we get the condensate fraction of neutron matter as a function of the
neutron density n.

10M. Matsuo, PRC 73, 044309 (2006).
11L.S., PRC 84, 067301 (2011)



Neutron matter (VII)
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Figure: Condensate fraction n0/n of neutron matter as a function of the scaled
density n/ns , where ns = 0.16 fm−3 is the nuclear saturation density. The solid
line is obtained by using Eqs. (31) and (33). The dashed line is obtained by
using Eqs. (32) and (33).



Neutron stars (I)

Neutron stars are astronomical compact objects that can result from
the gravitational collapse of a massive star during a supernova event.
Such stars are mainly composed of neutrons.

Neutron stars are very hot and are supported against further collapse by
Fermi pressure. A typical neutron star has a mass M between 1.35 and
about 2.0 solar masses with a corresponding radius R of about 12 km.



Neutron stars (II)

Notice that in the crust of neutron stars one estimates12 T ≃ 108 K,
while Tc ≃ 1010 K. Thus the crust of neutron stars is superfluid.
In previous slides we have found a fitting formula for the condensate
fraction n0/n of neutron matter as a function of the Fermi wave number

kF = (3π2n)1/3 . (35)

Knowing the density profile n(r) of a neutron star13, i.e. the neutron
density n as a function of the distance r from the center of a neutron
star, we can determine14 the condensate fraction n0/n of the neutron star
as a function of the distance r .

12S. Zane, R. Turolla, and D. Page, Isolated Neutron Stars: from the Surface to the
Interior (Springer, Berlin, 2007).

13B. Datta, A.V. Thampan, and D. Bhattacharya, J. Astrophys. Astr. 16, 375
(1995).

14LS, in preparation



Neutron stars (III)
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Figure: 1.4 solar mass neutron star. Left panel: Scaled density profile n/ns vs
scaled distance r/R. ns = 0.16 fm−3 is the nuclear saturation density and R is
the radius of the star. Right panel: condensate fraction n0/n vs scaled distance
r/R. Solid line is a simple neutron matter model [J.D. Walecka, Ann. Phys.
83, 491 (1974)]. Dashed line is a more realistic model [T.L. Ainsworth, and
J.M. Lattimer, PRL 61, 2518 (1988)].



Conclusions

We have seen that the condensate fraction of Cooper pairs can be
calculated in various superfluid fermionic systems: dilute atomic gases,
dense neutron matter and neutron stars.

Our results on these and similar topics are published in
L.S., N. Manini, and A. Parola, PRA 72, 023621 (2005).
L.S, PRA 76, 015601 (2007).
L.S., PRA 83, 033630 (2011).
L. Dell’Anna, G. Mazzarella, and L.S., PRA 84, 033633 (2011).
L.S., PRC 84, 067301 (2011).
L. Dell’Anna, G. Mazzarella, and L.S., PRA 86, 053632 (2012).
L.S., PRA 86, 055602 (2012).
L.S. and F. Toigo, PRA 86, 023619 (2012).
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