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@ Collective variables: phases, positions, populations
@ Mean-field often misses quantum fluctuations
@ Exact many-body simulation is impractical for large systems

e Quantum Effective Action provides a systematic approach?

Phases, Positions, Populations
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One-loop quantum effective action

In the 1970s, in the context of relativistic quantum field theory for a
scalar field ®(r, t), it was proved? this remarkable one-loop expansion:

r[o] = (o] ~ 2 Trin (gnf[qa]) (1)

o [: quantum effective action
@ S: classical action

@ 7)(r, t): fluctuation field around saddle-point solution

Eq. (1) gives quantum corrections to a classical field theory up to
one-loop (Gaussian) fluctuations.
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Non-relativistic effective quantum potential

In simple cases the field ®(r, t) can be a collective dynamical variable

q(t):

o(r, t) = q(t) . (2)
The non-relativistic classical action could be
m .
Stal = [ dt [ 54~ V(@) 3)

and the corresponding quantum effective potential reads3
h [V 7
Vet (q) = V(q) + 2\/ ns 9) + kg T|n[ e MV W”’/(ksﬂ] . (4)

@ First term: classical potential
@ Second term: quantum zero-point energy

@ Third term: thermal fluctuations at temperature T

3L.S., Atoms 13, 95 (2025).



Effective quantum potential for oscillations

Let us consider small oscillations around some equilibrium g* of V/(q). In
classical mechanics the corresponding oscillation frequency is

w=1]Vi(g). (5)

Instead, by using the quantum effective potential we get

1
weir =\ - Vii(a") (6)

which gives quantum and thermal corrections to w:

Weff = weff(h7 T) (7)

such that
we(B, T) >w forh—0and T —0. (8)



Case study: Josephson tunneling with BEC (1)

@ Variables: relative phase ¢(t), population imbalance z(t)
@ Mean-field (classical) tunneling action for N bosons:

sto.2) = [ ae|"520 - Hz.0) ©)

e Integrating out* z one gets the only-phase action for ¢

Tunneling

()

z(t)
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Case study: Josephson tunneling with BEC (I1)

A system of N interacting bosons confined by an asymmetric double-well
potential can be described by the two-site Bose-Hubbard model

~ U ~ PNESN
A=—J(@ta+aa)+ Sk -1)+ MR- 1)) (10)

with J > 0 the tunnelmg (hopping) energy U the boson-boson
interaction, and N = aJ 4;j. Here 4; and a are the bosonic ladder
operators.

The mean-field approximation is obtained by using Glauber coherent

states
[9(t)) = laa(t))1 [e2(t))2 (11)

where |a(t)) is the eigenstate of the annihilation operator &;, with

complex eigenvalue
aj(t) = /Nj(t) €49, (12)

where N;(t) = (1(t)|N;|4)(t)) is the average number of bosons in the site
Jj=1,2 and ¢;(t) is the corresponding phase.



Case study: Josephson tunneling with BEC (I11)

One can also introduce® the relative phase
o(t) = ¢2(t) — ¢1(t) (13)
and the normalized population imbalance

z(t) = W e [-1,1] (14)

Here N = Ny (t) + No(t) is a constant of motion.

Quite remarkably, the mean-field dinamics is obtained by extremizing the
following action functional

Stz.dl = [ (ing: - A1) (o). (15)
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Case study: Josephson tunneling with BEC (1V)

Specifically, we find®

5[z,¢]:/ {NFLZq&— +Jchos¢}, (16)

with ¢(t) and z(t) Lagrangian variables. Actually, for this specific
problem z(t) and ¢(t) are canonically conjugated.
The corresponding Euler-Lagrange equations are

. 2Jz

hp = ——
¢ V1—2z2

hz=—-2Jy1—2%sin¢. (17b)

Linearizing Egs. (17a) and (17b) around z =0 and ¢ = 0 one gets the
mean-field Josephson frequency

V/2J(UN ¥ 2J)
Wy = f . (18)

cos ¢+ UNz + ¢, (17a)
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Only-phase effective action

Given the action S[z, ¢], the effective action for the phase S[¢] is defined
7
as
endlol = / Dlz] eS| (19)

The path integral can be computed explicitly expanding S|z, ¢,] up to
second order around z = 0. The resulting only-phase mean-field action is

given by
stol = [ ae| "6 - vio)] (20)
where
NR?
™) = A UN T 2dcos(9)) 2)
V() = —JINcos(¢) . (22)
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Quantum corrections to Josephson dynamics (1)

The one-loop effective action:
ih 52S
rle] = Slol + 5 T (32161 (23)

provides a systematic way to include beyond-mean-field (quantum)
fluctuations. At zero temperature we find®

riol = [ a6 [0 - viagey] (24)
where

mﬂ@——mw+£@ﬁﬁ¥ (25)

V() = V(o) + 20 (26)
with ,

ey — V)= ni V') -

m(¢)
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Quantum corrections to Josephson dynamics (II)
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Effective mass (left panel) and effective potential as functions of ¢ for
U=J=1.0and N =50 (green lines), 100 (orange lines), and 200 (blue
lines). The dashed lines represent the corresponding mean-field result.
Adapted from C. Vianello, S. Salvatore, L.S., Int. J. Theor. Phys. 64,
315 (2025).




Quantum corrections to Josephson dynamics (lII)

Quantum corrections do not change the position of the minimum of the
effective potential Ve (), which is still located at ¢ = 0, where also
m.(0) = 0. In particular, small oscillations around ¢ = 0 are harmonic,
with the frequency

Ve’f’F (0) UN +6J (28)
mefr(0) V2J(UN +2J)
where
2J(UN + 2
Wy = V2J(UN +2J) (29)

I
is the mean-field Josephson frequency.
e Exact numerical results® confirm the robustness of Eq. (28).

@ The relative correction induced by quantum fuctuations can be of
3% for condensates with N = 100 atoms in realistic trapping
configurations.
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Quantum corrections to Josephson dynamics (IV)

N =80, U/J = 1.0, ¢(0) = 0.1, 2(0) = 0.0

exact
—:— mean field

=-==- quantum action
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Comparison between the exact dynamics (solid black line), the mean-field
dynamics (dashed-dotted blue line), and the quantum-corrected dynamics
(dashed red line) of the relative phase, for N =80, U = J = 1.0,

#(0) =0.1, and ¢>(O) = 0. Adapted from C. Vianello, S. Salvatore, L.S.,
Int. J. Theor. Phys. 64, 315 (2025).



Conclusions

Quantum effective action: useful method for fields and dynamical
variables.

@ Provides a bridge between classical (or mean-field) dynamics and
quantum fluctuations.

@ Can include thermal effects perturbatively.
@ Useful for theorists and experimentalists in quantum technologies.

e Work in progress: quantum effective action for optomechanics (with
F. Lorenzi and M. Pelizzo).

@ Work in progress: quantum effective action for resistively and
capacitively shunted superconducting Josephson junction (with A.
Bardin, K. Furutani, and J. Tempere).
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