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Motivation

Collective variables: phases, positions, populations

Mean-field often misses quantum fluctuations

Exact many-body simulation is impractical for large systems

Quantum Effective Action provides a systematic approach1

1S. Coleman, R. Jackiw, H. D. Politzer, Phys. Rev. D 10, 2491 (1974); J.
Iliopoulos, C. Itzykson, A. Martin, Rev. Mod. Phys. 47, 165 (1975).
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One-loop quantum effective action

In the 1970s, in the context of relativistic quantum field theory for a
scalar field Φ(r, t), it was proved2 this remarkable one-loop expansion:

Γ[Φ] = S [Φ]− i~
2

Tr ln

(
δ2S

δη2
[Φ]

)
(1)

Γ: quantum effective action

S : classical action

η(r, t): fluctuation field around saddle-point solution

Eq. (1) gives quantum corrections to a classical field theory up to
one-loop (Gaussian) fluctuations.

2S. Coleman, R. Jackiw, H. D. Politzer, Phys. Rev. D 10, 2491 (1974); J.
Iliopoulos, C. Itzykson, A. Martin, Rev. Mod. Phys. 47, 165 (1975).



Non-relativistic effective quantum potential

In simple cases the field Φ(r, t) can be a collective dynamical variable
q(t):

Φ(r, t) = q(t) . (2)

The non-relativistic classical action could be

S [q] =

∫
dt
[m

2
q̇2 − V (q)

]
(3)

and the corresponding quantum effective potential reads3

Veff(q) = V (q) +
~
2

√
V ′′(q)

m
+ kBT ln

[
1− e−~

√
V ′′(q)/m/(kBT )

]
. (4)

First term: classical potential

Second term: quantum zero-point energy

Third term: thermal fluctuations at temperature T

3L.S., Atoms 13, 95 (2025).



Effective quantum potential for oscillations

Let us consider small oscillations around some equilibrium q∗ of V (q). In
classical mechanics the corresponding oscillation frequency is

ω =

√
1

m
V ′′(q∗) . (5)

Instead, by using the quantum effective potential we get

ωeff =

√
1

m
V ′′eff(q∗) (6)

which gives quantum and thermal corrections to ω:

ωeff = ωeff(~,T ) (7)

such that
ωeff(~,T )→ ω for ~→ 0 and T → 0 . (8)



Case study: Josephson tunneling with BEC (I)

Variables: relative phase φ(t), population imbalance z(t)
Mean-field (classical) tunneling action for N bosons:

S [φ, z ] =

∫
dt

[
~Nz

2
φ̇− H(z , φ)

]
(9)

Integrating out4 z one gets the only-phase action for φ

4K. Furutani, J. Tempere, L.S., Phys. Rev. B 105, 134510 (2022); C. Vianello, S.
Salvatore, L.S., Int. J. Theor. Phys. 64, 315 (2025).



Case study: Josephson tunneling with BEC (II)

A system of N interacting bosons confined by an asymmetric double-well
potential can be described by the two-site Bose-Hubbard model

Ĥ = −J
(
â+

1 â2 + â+
2 â1

)
+

U

2
[N̂1(N̂1 − 1) + N̂2(N̂2 − 1)] (10)

with J > 0 the tunneling (hopping) energy, U the boson-boson
interaction, and N̂j = â+

j âj . Here â1 and â+
j are the bosonic ladder

operators.
The mean-field approximation is obtained by using Glauber coherent
states

|ψ(t)〉 = |α1(t)〉1 |α2(t)〉2 (11)

where |αj(t)〉 is the eigenstate of the annihilation operator âj , with
complex eigenvalue

αj(t) =
√

Nj(t) e iφj (t) , (12)

where Nj(t) = 〈ψ(t)|N̂j |ψ(t)〉 is the average number of bosons in the site
j = 1, 2 and φj(t) is the corresponding phase.



Case study: Josephson tunneling with BEC (III)

One can also introduce5 the relative phase

φ(t) = φ2(t)− φ1(t) (13)

and the normalized population imbalance

z(t) =
N1(t)− N2(t)

N
∈ [−1, 1] (14)

Here N = N1(t) + N2(t) is a constant of motion.
Quite remarkably, the mean-field dinamics is obtained by extremizing the
following action functional

S [z , φ] =

∫
〈ψ(t)|

(
i~
∂

∂t
− Ĥ

)
|ψ(t)〉. (15)

5A. Smerzi, S. Fantoni, S. Giovanazzi, S.R. Shenoy, Phys. Rev. Lett. 79, 4950
(1997)



Case study: Josephson tunneling with BEC (IV)

Specifically, we find6

S [z , φ] =

∫
dt

[
N~z

2
φ̇− UN2

4
z2 + JN

√
1− z2 cosφ

]
, (16)

with φ(t) and z(t) Lagrangian variables. Actually, for this specific
problem z(t) and φ(t) are canonically conjugated.
The corresponding Euler-Lagrange equations are

~φ̇ =
2Jz√
1− z2

cosφ+ UNz + ε, (17a)

~ż = −2J
√

1− z2 sinφ . (17b)

Linearizing Eqs. (17a) and (17b) around z = 0 and φ = 0 one gets the
mean-field Josephson frequency

ωJ =

√
2J(UN + 2J)

~
. (18)

6S. Wimberger, G. Manganelli, A. Brollo, L.S., Phys. Rev. A 103, 023326 (2021).



Only-phase effective action

Given the action S [z , φ], the effective action for the phase S [φ] is defined
as7

e
i
~S[φ] =

∫
D[z ] e

i
~S[z,φ] . (19)

The path integral can be computed explicitly expanding S [z , φ, ] up to
second order around z = 0. The resulting only-phase mean-field action is
given by

S [φ] =

∫
dt

[
m(φ)

2
φ̇2 − V (φ)

]
, (20)

where

m(φ) =
N~2

2(UN + 2J cos(φ))
. (21)

V (φ) = −JN cos(φ) . (22)

7K. Furutani, J. Tempere, L.S., Phys. Rev. B 105, 134510 (2022).



Quantum corrections to Josephson dynamics (I)

The one-loop effective action:

Γ[φ] = S [φ] +
i~
2

Tr ln

(
δ2S

δη2
[φ]

)
(23)

provides a systematic way to include beyond-mean-field (quantum)
fluctuations. At zero temperature we find8

Γ[φ] =

∫
dt

[
meff(φ)

2
φ̇2 − Veff(φ)

]
, (24)

where

meff(φ) = m(φ) +
~
32

(
∂φΩ(φ)2

)2

Ω(φ)5
(25)

Veff(φ) = V (φ) +
~Ω(φ)

2
(26)

with

Ω(φ)2 =
V ′′(φ)− m′(φ)

2m(φ)V
′(φ)

m(φ)
. (27)

8C. Vianello, S. Salvatore, L.S., Int. J. Theor. Phys. 64, 315 (2025).



Quantum corrections to Josephson dynamics (II)

Effective mass (left panel) and effective potential as functions of φ for
U = J = 1.0 and N = 50 (green lines), 100 (orange lines), and 200 (blue
lines). The dashed lines represent the corresponding mean-field result.
Adapted from C. Vianello, S. Salvatore, L.S., Int. J. Theor. Phys. 64,
315 (2025).



Quantum corrections to Josephson dynamics (III)

Quantum corrections do not change the position of the minimum of the
effective potential Veff(φ), which is still located at φ = 0, where also
m′eff(0) = 0. In particular, small oscillations around φ = 0 are harmonic,
with the frequency

ΩJ =

√
V ′′eff(0)

meff(0)
= ωJ

√
1− 1

2N

UN + 6J√
2J(UN + 2J)

, (28)

where

ωJ =

√
2J(UN + 2J)

~
(29)

is the mean-field Josephson frequency.

Exact numerical results9 confirm the robustness of Eq. (28).

The relative correction induced by quantum fuctuations can be of
3% for condensates with N = 100 atoms in realistic trapping
configurations.

9C. Vianello, S. Salvatore, L.S., Int. J. Theor. Phys. 64, 315 (2025).



Quantum corrections to Josephson dynamics (IV)

Comparison between the exact dynamics (solid black line), the mean-field
dynamics (dashed-dotted blue line), and the quantum-corrected dynamics
(dashed red line) of the relative phase, for N = 80, U = J = 1.0,
φ(0) = 0.1, and φ̇(0) = 0. Adapted from C. Vianello, S. Salvatore, L.S.,
Int. J. Theor. Phys. 64, 315 (2025).



Conclusions

Quantum effective action: useful method for fields and dynamical
variables.

Provides a bridge between classical (or mean-field) dynamics and
quantum fluctuations.

Can include thermal effects perturbatively.

Useful for theorists and experimentalists in quantum technologies.

Work in progress: quantum effective action for optomechanics (with
F. Lorenzi and M. Pelizzo).

Work in progress: quantum effective action for resistively and
capacitively shunted superconducting Josephson junction (with A.
Bardin, K. Furutani, and J. Tempere).
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