
Bright solitons of attractive Bose-Einstein

condensates confined in a quasi-1D optical lattice

Luca Salasnich

Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Italy
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BEC in a quasi-1D optical lattice (I)

We consider a dilute Bose-Einstein condensate (BEC) confined in the z

direction by a generic axial potential V (z) and in the plane (x , y) by
the transverse harmonic potential

U(x , y) =
m

2
ω2
⊥

(

x2 + y2
)

. (1)

The characteristic harmonic length is given by

a⊥ =

√

~

mω⊥

, (2)

and, for simplicity, we choose a⊥ and ω−1
⊥

, as length and time units, and
~ω⊥ as energy unit.



BEC in a quasi-1D optical lattice (II)

We assume that the system is well described by the 3D Gross-Pitaevskii
equation (GPE), and in scaled units it reads

i
∂

∂t
ψ(r, t) =

[

− ~
2

2m
∇2 +

1

2

(

x2 + y2
)

+ V (z) + 2πg |ψ(r, t)|2
]

ψ(r, t) ,

(3)
where ψ(r, t) is the macroscopic wave function of the condensate
normalized to the total number N of atoms and g = 2as/a⊥ with as the
s-wave scattering length of the inter-atomic potential.
In addition, we suppose that the axial potential is the combination of

periodic and harmonic potentials, i.e.

V (z) = V0 cos (2kz) +
1

2
λ2z2 . (4)

This potential models the quasi-1D optical lattice produced in
experiments with Bose-Einstein condensates by using
counter-propagating laser beams.1 Here λ = ωz/ω⊥ ≪ 1 models a weak
axial harmonic confinement.

1O. Morsch and M. Oberthaler, Rev. Mod. Phys. 78, 179 (2006).



Axial discretization of the 3D GPE (I)

We now perform a discretization of the 3D GPE along the z axis due to
the presence on the periodic potential. In particular we set

ψ(r, t) =
∑

n

φn(x , y , t) Wn(z) (5)

where Wn(z) is the Wannier function maximally localized at the n-th
minimum of the axial periodic potential. This tight-binding ansatz is
reliable in the case of a deep optical lattice.2

2A. Smerzi and A. Trombettoni, Phys. Rev. A 68, 023613 (2003).



Axial discretization of the 3D GPE (II)

We insert this ansatz into Eq. (3), multiply the resulting equation by
W ∗

n
(z) and integrate over z variable. In this way we get

i
∂

∂t
φn =

[

−1

2
∇2

⊥ +
1

2

(

x2 + y2
)

+ ǫn

]

φn−J (φn+1 + φn−1)+2πU |φn|2 φn,

(6)
where the parameters ǫ, J and U are given by

ǫn =

∫

W ∗

n
(z)

[

−1

2

∂2

∂z2
+ V (z)

]

Wn(z) dz , (7)

J = −
∫

W ∗

n+1(z)

[

−1

2

∂2

∂z2
+ V (z)

]

Wn(z) dz , (8)

U = g

∫

|Wn(z)|4 dz . (9)

The parameters J and U are practically independent on the site index n

and in the tight-binding regime J > 0.



Transverse dimensional reduction of the 3D DGPE

To further simplify the problem we set3

φn(x , y) =
1

π1/2σn(t)
exp

[

−
(

x2 + y2

2σn(t)2

)]

fn(t) , (10)

where σn(t) and fn(t), which account for discrete transverse width and
discrete axial wave function, are the effective generalized coordinates
to be determined variationally.
We insert this ansatz into the Lagrangian density associated to Eq. (6)
and integrate over x and y variables. In this way we obtain an effective
Lagrangian for the fields fn(t) and σn(t).

3A. Maluckov, L. Hadzievski, B.A. Malomed, LS, Phys. Rev. A 78, 013616 (2008);
G. Gligoric, A. Maluckov, LS, B. A. Malomed, L. Hadzievski, Chaos 19, 043105
(2009).



1D DNPSE (I)

The Euler-Lagrange equation of the effective Lagrangian with respect to
f ∗

n
is

i
∂

∂t
fn =

[

1

2

(

1

σ2
n

+ σ2
n

)

+ ǫn

]

fn − J (fn+1 + fn−1) +
U

σ2
n

|fn|2fn . (11)

while the Euler-Lagrange equation with respect to σn gives

σ4
n

= 1 + U|fn|2 . (12)

Inserting Eq. (12) into Eq. (11) we finally get

i
∂

∂t
fn = ǫn fn − J (fn+1 + fn−1) +

1 + (3/2)U|fn|2
√

1 + U|fn|2
fn , (13)

that is the 1D discrete nonpolynomial Schrödinger equation (DNPSE),
describing the BEC under a transverse anisotropic harmonic confinement
and an axial optical lattice.



1D DNPSE (II)

The 1D NPSE reduces to the familiar 1D DGPE (1D cubic DNLSE)

i
∂

∂t
fn = ǫn fn − J (fn+1 + fn−1) + U|fn|2fn (14)

in the weak-coupling limit |U||fn|2 ≪ 1, where U can be both positive
and negative. On the contrary, it becomes a 1D quadratic DNLSE

i
∂

∂t
fn = ǫn fn − J (fn+1 + fn−1) + (3/2)

√
U|fn|fn (15)

in the strong-coupling limit U|fn|2 ≫ 1, where U > 0.



Numerical results (I)

We have solved numerically both 1D DNPSE and 1D DGPE by using a
Crank-Nicolson predictor-corrector algorithm with imaginary time to get
the ground-state of the system.

In the next two slides we report our results obtained with N = 100 atoms
in a quasi-1D optical lattice with weak axial harmonic confinement:
λ = ωz/ω⊥ = 0.1.

The plots are shown for different values of the repulsive on-site
interaction strength U: U > 0.

In the experiments U can be tuned by using the technique of Feshbach
resonances.



Numerical results (II)
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Numerical results (III)
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Numerical results (IV)

Now we show the results obtained again with N = 100 atoms in a
quasi-1D optical lattice but with an attractive on-site interaction
strength U: U < 0.

In the attractive case the ground-state is self-localized and it exists also
in the absence (λ = 0) of the axial harmonic potential: discrete bright
soliton.



Numerical results (V)
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Numerical results (VI)
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Collapse of the discrete bright soliton (I)

By increasing the attractive on-site interaction U (U < 0) the 1D DGPE
shows that eventually all the atoms accumulate into the same site.

Actually, the 1D DNPSE shows something different: before all the atoms
populate the same site there is the collapse of the condensate: 1D
DNPSE does not admit anymore a finite ground-state solution.

Numerically we find that the collapse occurs when U < 0 and

|U|N
J

& 2.1 (16)

which is consistent with analytical result4 |U|N/J > 8/3 of the
continuum limit.

4LS, A. Parola, L. Reatto, Phys. Rev. A 65, 043614 (2002).



Collapse of the discrete bright soliton (II)
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Conclusions

From the 3D GPE of bosons in a quasi-1D optical lattive we have
derived an effective 1D DNPSE.

The DNPSE reduces to the 1D DGPE in the weak-coupling limit.

The DNPSE gives quite different results with respect to the 1D
DGPE in the (repulsive) strong-coupling limit.

In the case of attractive on-site interaction there is a self-localized
solution: the discrete bright soliton.

The DNPSE predicts the collapse of the discrete bright soliton above
a critical (attractive) on-site interaction.

Our results are reliable in the superfluid regime |U|N/J ≪ N2 where
the 3D GPE is meaningful.
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