Topological quantum matter

and Kosterlitz-Thouless transition

Luca Salasnich

Dipartimento di Fisica e Astronomia “Galileo Galilei”, Universita di Padova

PhD School in Physics, UNIPD 2020



Fluids vs superfluids

Topology in Physics: quantized vortices
Quantized vortex line in 2D

BEC and Mermin-Wagner theorem

2D systems: Kosterlitz-Thouless transition



Fluids vs superfluids

A fluid can be described by the Navier-Stokes equations of
hydrodynamics

0
6tn—|—V (nv) = 0, (1)
(;)tv—nv2v+V{ mv? + U + p(n )] = mvA(VAv) ,(2)

where n(r, t) is the density field and v(r, t) is the velocity field. Here 7 is
the viscosity, Uex(r) is the external potential acting on the particles of
the fluid, and u(n) is the equation of state of the fluid.

A superfluid is characterized by zero viscosity, i.e. 7 =0, and
irrotationality, i.,e. VAv=0.

The equations of superfluid hydrodynamics (EoSH) are then

0
ans—ﬁ—Vo(nsvs) = 0, (3)

8
—vs+V mv + Uext + pu(ns)| = 0. (4)

ot

EoSH describe extremely well the superfluid “He, ultracold gases of
alkali-metal atoms, and also several properties of superconductors.



Topology in Physics: quantized vortices (I)

Topology studies objects that are preserved under continuous
deformations.

simply connected simply connected nei simply connected

A connected domain is said to be simply connected if any closed curve
C can be shrunk to a point continuously in the set.
If the domain is not simply connected, it is said to be multiply connected.

Roughly speaking, a way to produce a multiply connected domain is to
introduce holes.



Topology in Physics: quantized vortices (I1)

In the 1950s Lars Onsager, Richard Feynman (Nobel 1965), and
Alexei Abrikosov (Nobel 2003) suggested that for superfluids the
circulation of the superfluid velocity field v¢(r, t) around a generic closed
path C must be quantized, namely

h
%vs-dr:—%rq, (5)
I m

where £ is the reduced Planck constant and g = 0,+£1,42,.... is an
integer number.

If g # 0 it means that inside the closed path C there are topological
defects, and the domain where vy is well defined is multiply connected.

For a multiply connected domain D, with r € D one gets

V Avs(r) =0 = vi(r) = Vx(r) with x(r) multi-valued scalar field.



Topology in Physics: quantized vortices (1)

A simple example of topological defect is a quantized vortex line along

the z axis.
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Vortex line: superfluid number density ns and modulus of the superfluid
velocity vs as a function of the cylindric radial coordinate R.
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Clearly at R =0, i.e. at (x,y) = (0,0), the superfluid velocity is not
defined. q is called charge of the vortex and ¢ is the healing length.



Topology in Physics: quantized vortices (V)

Nowadays quantized vortices are observed experimentally in type-II
superconductors, in superfluid liquid helium, and in ultracold atomic

gases.

Formation of quantized vortices in a Bose-Einstein condensate of 8’Rb atoms.
The number of quantized vortices grows by increasing the frequency of rotation
of the system [J. R. Abo-Shaeer, C. Raman, J.M. Vogels, W. Ketterle, Science
292, 476 (2001)]. Wolfang Ketterle, with Eric Cornell and Carl Wieman

(Nobel 2001).



Topology in Physics: quantized vortices (V)

The quantization of circulation can be explained assuming that the
dynamics of superfluids is driven by a complex scalar field

U(r,t) = [(r, t)] 0D (6)

which satisfies the nonlinear Schrédinger equation (NLSE)

iy = -0y v vt uqup) o (@)
ot 2m ext "
and it is such that

mr ) =P ()= var ). Q

In fact, under these assumptions, NLSE is practically equivalent to EoSH
and the angle variable 6(r, t) is such that

fédGz}iV@(r,t)-dr:%Tqu, (9)

with g; the quantum number, also called topological charge, of the j-th
vortex.



Topology in Physics: quantized vortices (VI)

The NLSE of the complex scalar field v(r, t) of superfluids
0= [ 2w ] vk o) (10)
"ot T | 2m ot K

admits the constant of motion (energy of the system)

h2
E= [ {5 V0P + Yo WP +EQUY} 0%, (1)
where u(|y]?) = %ﬁf). Taking into account that
V) = (02 00 with wi(et) = Lvory (12
one finds ) 5 i (V)2
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which are phase-stiffness energy and quantum pressure.



Quantized vortex line (1)

For a three-dimensional (3D) time-independent superfluid we have

Y(r) = [o(r)] ), (14)
where r = (x, y, z) is the position vector,

h

ns(r) = [0, () = —VO(r) (15)

A single quantized vortex line with topological charge g € Z and located
along the z axis is obtained setting Ue; = 0 and

6(r) = q ¢ = garctan (%) ) (16)
where ¢ = arctan (y/x) is the polar angle of cylindrical coordinates.

Taking into account that V = (0, 0y, 0,) = (Or, %6,15,82) with
R = y/x2 + y? is the polar radius of cylindrical coordinates, one finds

vs(r) = %% u, (17)

X

.y . .
where u = ( S ey 0) is a unit vector orthogonal to r.




Quantized vortex line (1)

Let us now consider a stationary two-dimensional (2D) superfluid with a
quantized vortex line. We also assume that the modulus of the complex
scalar field is uniform, i.e.

Y(r) = o €0 = gy €1 = gy elrareten(3) (18)
where r = (x,y) = (r, ¢) with r = /x2 + y? and ¢ = arctan(y/x).

The kinetic energy Ex, with ngo = [1o]? and vs(r) = (R/m)(q/r), is
given by

1 1 h2 2
Exk = /{2’" Nso VS(")Q} d’r = M nso/{m;iz} d'r
h2q2 Fmax 27 1
= T [ [ dsd
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2
_ mh*nsg q2 In (rmax> , (19)
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where ry is the minimal distance, related to the healing length, while .
is the maximal distance. Notice that Ex = 0 for rpax = ro.



Vortex-antivortex pair (1)

Let us now consider a 2D superfluid system characterized by two
(effectively parallel along the z axis) vortex lines at the 2D positions
ri = (x1,y1) and r; = (X2, y2) with opposite topological charge ¢ and
—q. This is the so-called vortex-antivortex configuration. The
corresponding 2D superfluid velocity is given by

h g h g

vs(r) = v 1(r) + vso(r) = us , (20)

iid u;
mr—r m|r —r;
where

1

zm(yj—y,x—xj-) (21)
J

u;

are 2D unit vectors perpendicular (in the plane XY) to the 2D position
vectors r —rj = (x — xj,y — y;), with j =1,2.



Vortex-antivortex pair (Il)

The kinetic energy of this system then reads

1 1
Ex = /{Zm Nso vs(r)2} d’r = Em nso/{|vs,1(r)+v572(r)|2} d°r
2
h2n50q2 / u; _ uy d2|’ . (22)
2m [r—ri| |r—ry
After some calculations one finds
Ex = Ex1+ Exp+ Ex 12, (23)
where
h? «
Exy = Eko= 0 G n (r’"a ) (24)
o
h2 2 _
Exp = 2009 <|r1 r2|> . (25)
m h

The formation of a vortex-antivortex pair at a distance larger that ry has
an energy cost. Thus, oppositely charged vortices attract, and they prefer
to stay at the minimal distance, i.e. |ry — r2| = ro.



BEC and Mermin-Wagner theorem (1)

In three spatial dimensions (D = 3), the complex scalar field of
superfluids is called order parameter of the system and it is often
identified as the macroscopic wavefunction of Bose-Einstein
condensation (BEC), where a macroscopic fraction of particles occupies
the same single-particle quantum state.

BEC phase transition: For an ideal gas of non-interacting identical
bosons there is BEC only below a critical temperature Tgec. In particular

one finds 2
1 2/3 _
3@ m ! /3 for D=3
kg Tgec = 0 for D=2
no solution forD=1

where D is the spatial dimension of the system, n is the number density,
and ((x) is the Riemann zeta function.



BEC and Mermin-Wagner theorem (lII)

This result due to Einstein (1925), which says that there is no BEC at
finite temperature for D < 2 in the case of non-interacting bosons, was
extended to interacting systems by David Mermin and Herbert
Wagner in 1966.

For the BEC phase transition, the Mermin-Wagner theorem states that

there is no Bose-Einstein condensation at finite temperature in
homogeneous systems with sufficiently short-range interactions in
dimensions D < 2.



2D systems: Kosterlitz-Thouless transition (1)

Despite the absence of BEC, in 1972 Kosterlitz and Thouless (but also
Vadim Berezinskii (1935-1980)) suggested that a 2D fluid can be
superfluid below a critical temperature, the so-called
Berezinskii-Kosterlitz-Thouless critical temperature Tgxr.

They analyzed the 2D XY model, which was originally used to describe
the magnetization in a planar lattice of classical spins. The energy of the
continuous 2D XY model is given by

E:/ é(vef d?r,

where 0(r) is the angular field and J is the phase stiffness (rigidity).
This is nothing else than the energy of the 2D NLSE of the complex
scalar field

P(r) = g &) (26)

of 2D superfluids with a uniform modulus g = /nso, where
J = ng(h?/m), and neglecting the bulk energy.



2D systems: Kosterlitz-Thouless transition (I1)

A simple way to estimate the Berezinskii-Kosterlitz-Thouless (BKT)
critical temperature Tgkr is to consider the Helmholtz free energy F of
the 2D superfluid system characterized by one vortex line with
topological charge g = 1 at temperature T. It is given by

F=E-TS, (27)

where the internal energy E reads

E—rJln (g) (28)

with J = h%ng/m the phase stiffness, while the entropy S is given by

2
S =kgln (”R) = 2kg In (R> ; (29)
™h h

with (7R?)/(7r) the number of possible configurations of the vortex line
of size ry in a circular domain of size R.



2D systems: Kosterlitz-Thouless transition (I11)

It follows that P
F=(rJ—2kgT) In <r> . (30)
0

This function does not have singularities. The temperature T, at which
F changes sign is then

(31)

For T < T, the free energy F is positive and in the limit R — +o0 it
goes to F — 4o00. Instead, T > T, the free energy F is negative and in
the limit R — 400 it goes to F — —oco. Therefore, in the case of a very
large system, T, signals the topological phase transition from a superfluid
phase (0 < T < T.) without free vortices to a normal phase (T > T.)
characterized by the proliferation of free vortices.

This is the simplest argument for the Kosterlitz-Thouless transition based
on a single vortex. Actually, Eq. (31) gives the same critical temperature
Tkt one derives from a more sophisticated approach based on the
renormalization group.



2D systems: Kosterlitz-Thouless transition (1V)

The analysis of Kosterlitz and Thouless based on the renormalization
group shows that:

@ As the temperature T increases vortices start to appear in
vortex-antivortex pairs (mainly with ¢ = +1).

@ The pairs are bound at low temperature until at the critical
temperature T, = TpgkT an unbinding transition occurs above which
a proliferation of free vortices and antivortices is predicted.

@ The phase stiffness J is renormalized by the presence of vortices.

@ The renormalized superfluid density ny = J(m/h?) decreases by
increasing the temperature T and jumps to zero above T, = TpkT.

Superfluid (T < T ) Normal state (T > T )

Bound vortex-antivortex pairs Proliferation of free vortices



2D systems: Kosterlitz-Thouless transition (V)

An important prediction of the Kosterlitz-Thouless transition is that,
contrary to the 3D case, in 2D the superfluid fraction ng/n jumps to zero
above a critical temperature.
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For 3D superfluids the transition to the normal state is a BEC phase
transition, while in 2D superfluids the transition to the normal state is
something different: a topological phase transition.



