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Fluids vs superfluids

A fluid can be described by the Navier-Stokes equations of
hydrodynamics

∂

∂t
n + ∇ · (nv) = 0 , (1)

m
∂

∂t
v − η ∇2v + ∇

[
1

2
mv2 + Uext + µ(n)

]
= m v ∧ (∇ ∧ v) ,(2)

where n(r, t) is the density field and v(r, t) is the velocity field. Here η is
the viscosity, Uext(r) is the external potential acting on the particles of
the fluid, and µ(n) is the equation of state of the fluid.
A superfluid is characterized by zero viscosity, i.e. η = 0, and
irrotationality, i.e. ∇ ∧ v = 0.
The equations of superfluid hydrodynamics (EoSH) are then

∂

∂t
ns + ∇ · (nsvs) = 0 , (3)

m
∂

∂t
vs + ∇

[
1

2
mv2

s + Uext + µ(ns)

]
= 0 . (4)

EoSH describe extremely well the superfluid 4He, ultracold gases of
alkali-metal atoms, and also several properties of superconductors.



Topology in Physics: quantized vortices (I)

Topology studies objects that are preserved under continuous
deformations.

A connected domain is said to be simply connected if any closed curve
C can be shrunk to a point continuously in the set.
If the domain is not simply connected, it is said to be multiply connected.

Roughly speaking, a way to produce a multiply connected domain is to
introduce holes.



Topology in Physics: quantized vortices (II)

In the 1950s Lars Onsager, Richard Feynman (Nobel 1965), and
Alexei Abrikosov (Nobel 2003) suggested that for superfluids the
circulation of the superfluid velocity field vs(r, t) around a generic closed
path C must be quantized, namely∮

C
vs · dr =

~
m

2π q , (5)

where ~ is the reduced Planck constant and q = 0,±1,±2, .... is an
integer number.
If q 6= 0 it means that inside the closed path C there are topological
defects, and the domain where vs is well defined is multiply connected.

For a multiply connected domain D, with r ∈ D one gets

∇ ∧ vs(r) = 0 =⇒ vs(r) = ∇χ(r) with χ(r) multi-valued scalar field.



Topology in Physics: quantized vortices (III)

A simple example of topological defect is a quantized vortex line along
the z axis.

Vortex line: superfluid number density ns and modulus of the superfluid

velocity vs as a function of the cylindric radial coordinate R.

ns(R) ' ns(∞)

(
1− 1

1 + R2

ξ2

)
and vs(R) =

~
m

q

R

Clearly at R = 0, i.e. at (x , y) = (0, 0), the superfluid velocity is not
defined. q is called charge of the vortex and ξ is the healing length.



Topology in Physics: quantized vortices (IV)

Nowadays quantized vortices are observed experimentally in type-II
superconductors, in superfluid liquid helium, and in ultracold atomic
gases.

Formation of quantized vortices in a Bose-Einstein condensate of 87Rb atoms.

The number of quantized vortices grows by increasing the frequency of rotation

of the system [J. R. Abo-Shaeer, C. Raman, J.M. Vogels, W. Ketterle, Science

292, 476 (2001)]. Wolfang Ketterle, with Eric Cornell and Carl Wieman

(Nobel 2001).



Topology in Physics: quantized vortices (V)

The quantization of circulation can be explained assuming that the
dynamics of superfluids is driven by a complex scalar field

ψ(r, t) = |ψ(r, t)| e iθ(r,t) , (6)

which satisfies the nonlinear Schrödinger equation (NLSE)

i~
∂

∂t
ψ =

[
− ~2

2m
∇2 + Uext

]
ψ + µ(|ψ|2) ψ (7)

and it is such that

ns(r, t) = |ψ(r, t)|2 , vs(r, t) =
~
m
∇θ(r, t) . (8)

In fact, under these assumptions, NLSE is practically equivalent to EoSH
and the angle variable θ(r, t) is such that∮

C
dθ =

∮
C
∇θ(r, t) · dr = 2π

∑
j

qj , (9)

with qj the quantum number, also called topological charge, of the j-th
vortex.



Topology in Physics: quantized vortices (VI)

The NLSE of the complex scalar field ψ(r, t) of superfluids

i~
∂

∂t
ψ =

[
− ~2

2m
∇2 + Uext

]
ψ + µ(|ψ|2) ψ (10)

admits the constant of motion (energy of the system)

E =

∫ {
~2

2m
|∇ψ|2 + Uext |ψ|2 + E(|ψ|2)

}
dDr , (11)

where µ(|ψ|2) = ∂E(|ψ|2)
∂|ψ|2 . Taking into account that

ψ(r, t) = ns(r, t)1/2 e iθ(r,t) with vs(r, t) =
~
m
∇θ(r, t) (12)

one finds
~2

2m
|∇ψ|2 =

~2

2m
ns (∇θ)2 +

~2

8m

(∇ns)2

ns
, (13)

which are phase-stiffness energy and quantum pressure.



Quantized vortex line (I)

For a three-dimensional (3D) time-independent superfluid we have

ψ(r) = |ψ(r)| e iθ(r) , (14)

where r = (x , y , z) is the position vector,

ns(r) = |ψ(r)|2 , vs(r) =
~
m
∇θ(r) . (15)

A single quantized vortex line with topological charge q ∈ Z and located
along the z axis is obtained setting Uext = 0 and

θ(r) = q φ = q arctan
(y
x

)
, (16)

where φ = arctan (y/x) is the polar angle of cylindrical coordinates.
Taking into account that ∇ = (∂x , ∂y , ∂z) = (∂R ,

1
R ∂φ, ∂z) with

R =
√
x2 + y2 is the polar radius of cylindrical coordinates, one finds

vs(r) =
~
m

q

R
u , (17)

where u =
(
− y√

x2+y2
, x√

x2+y2
, 0
)

is a unit vector orthogonal to r.



Quantized vortex line (II)

Let us now consider a stationary two-dimensional (2D) superfluid with a
quantized vortex line. We also assume that the modulus of the complex
scalar field is uniform, i.e.

ψ(r) = ψ0 e iθ(r) = ψ0 e iqφ = ψ0 e iq arctan ( y
x ) , (18)

where r = (x , y) = (r , φ) with r =
√
x2 + y2 and φ = arctan(y/x).

The kinetic energy EK , with ns0 = |ψ0|2 and vs(r) = (~/m)(q/r), is
given by

EK =

∫ {
1

2
m ns0 vs(r)2

}
d2r =

1

2
m ns0

∫ {
~2q2

m2r2

}
d2r

= ns0
~2q2

2m

∫ rmax

r0

dr r

∫ 2π

0

dφ
1

r2

=
π~2ns0

m
q2 ln

(
rmax

r0

)
, (19)

where r0 is the minimal distance, related to the healing length, while rmax

is the maximal distance. Notice that EK = 0 for rmax = r0.



Vortex-antivortex pair (I)

Let us now consider a 2D superfluid system characterized by two
(effectively parallel along the z axis) vortex lines at the 2D positions
r1 = (x1, y1) and r2 = (x2, y2) with opposite topological charge q and
−q. This is the so-called vortex-antivortex configuration. The
corresponding 2D superfluid velocity is given by

vs(r) = vs,1(r) + vs,2(r) =
~
m

q

|r − r1|
u1 −

~
m

q

|r − r2|
u2 , (20)

where

uj =
1

|r − rj |
(yj − y , x − xj) (21)

are 2D unit vectors perpendicular (in the plane XY) to the 2D position
vectors r − rj = (x − xj , y − yj), with j = 1, 2.



Vortex-antivortex pair (II)

The kinetic energy of this system then reads

EK =

∫ {
1

2
m ns0 vs(r)2

}
d2r =

1

2
m ns0

∫ {
|vs,1(r) + vs,2(r)|2

}
d2r

=
~2ns0q

2

2m

∫ ∣∣∣∣ u1

|r − r1|
− u2

|r − r2|

∣∣∣∣2 d2r . (22)

After some calculations one finds

EK = EK ,1 + EK ,2 + EK ,12 , (23)

where

EK ,1 = EK ,2 =
π~2ns0

m
q2 ln

(
rmax

r0

)
(24)

EK ,12 = 2π
~2ns0q

2

m
ln

(
|r1 − r2|

r0

)
. (25)

The formation of a vortex-antivortex pair at a distance larger that r0 has
an energy cost. Thus, oppositely charged vortices attract, and they prefer
to stay at the minimal distance, i.e. |r1 − r2| = r0.



BEC and Mermin-Wagner theorem (I)

In three spatial dimensions (D = 3), the complex scalar field of
superfluids is called order parameter of the system and it is often
identified as the macroscopic wavefunction of Bose-Einstein
condensation (BEC), where a macroscopic fraction of particles occupies
the same single-particle quantum state.

BEC phase transition: For an ideal gas of non-interacting identical
bosons there is BEC only below a critical temperature TBEC . In particular
one finds

kB TBEC =


1

2πζ(3/2)2/3
~2

m n2/3 for D = 3

0 for D = 2
no solution for D = 1

where D is the spatial dimension of the system, n is the number density,
and ζ(x) is the Riemann zeta function.



BEC and Mermin-Wagner theorem (II)

This result due to Einstein (1925), which says that there is no BEC at
finite temperature for D ≤ 2 in the case of non-interacting bosons, was
extended to interacting systems by David Mermin and Herbert
Wagner in 1966.

For the BEC phase transition, the Mermin-Wagner theorem states that

there is no Bose-Einstein condensation at finite temperature in
homogeneous systems with sufficiently short-range interactions in
dimensions D ≤ 2.



2D systems: Kosterlitz-Thouless transition (I)

Despite the absence of BEC, in 1972 Kosterlitz and Thouless (but also
Vadim Berezinskii (1935-1980)) suggested that a 2D fluid can be
superfluid below a critical temperature, the so-called
Berezinskii-Kosterlitz-Thouless critical temperature TBKT .
They analyzed the 2D XY model, which was originally used to describe
the magnetization in a planar lattice of classical spins. The energy of the
continuous 2D XY model is given by

E =

∫
J

2
(∇θ)2 d2r ,

where θ(r) is the angular field and J is the phase stiffness (rigidity).
This is nothing else than the energy of the 2D NLSE of the complex
scalar field

ψ(r) = ψ0 e
iθ(r) (26)

of 2D superfluids with a uniform modulus ψ0 =
√
ns0, where

J = ns0(~2/m), and neglecting the bulk energy.



2D systems: Kosterlitz-Thouless transition (II)

A simple way to estimate the Berezinskii-Kosterlitz-Thouless (BKT)
critical temperature TBKT is to consider the Helmholtz free energy F of
the 2D superfluid system characterized by one vortex line with
topological charge q = 1 at temperature T . It is given by

F = E − T S , (27)

where the internal energy E reads

E = πJ ln

(
R

r0

)
(28)

with J = ~2ns0/m the phase stiffness, while the entropy S is given by

S = kB ln

(
πR2

πr0

)
= 2kB ln

(
R

r0

)
, (29)

with (πR2)/(πr2
0 ) the number of possible configurations of the vortex line

of size r0 in a circular domain of size R.



2D systems: Kosterlitz-Thouless transition (III)

It follows that

F = (πJ − 2kBT ) ln

(
R

r0

)
. (30)

This function does not have singularities. The temperature Tc at which
F changes sign is then

kBTc =
π

2
J =

π~2ns0

2m
. (31)

For T < Tc the free energy F is positive and in the limit R → +∞ it
goes to F → +∞. Instead, T > Tc the free energy F is negative and in
the limit R → +∞ it goes to F → −∞. Therefore, in the case of a very
large system, Tc signals the topological phase transition from a superfluid
phase (0 ≤ T < Tc) without free vortices to a normal phase (T > Tc)
characterized by the proliferation of free vortices.

This is the simplest argument for the Kosterlitz-Thouless transition based
on a single vortex. Actually, Eq. (31) gives the same critical temperature
TBKT one derives from a more sophisticated approach based on the
renormalization group.



2D systems: Kosterlitz-Thouless transition (IV)

The analysis of Kosterlitz and Thouless based on the renormalization
group shows that:

As the temperature T increases vortices start to appear in
vortex-antivortex pairs (mainly with q = ±1).

The pairs are bound at low temperature until at the critical
temperature Tc = TBKT an unbinding transition occurs above which
a proliferation of free vortices and antivortices is predicted.

The phase stiffness J is renormalized by the presence of vortices.

The renormalized superfluid density ns = J(m/~2) decreases by
increasing the temperature T and jumps to zero above Tc = TBKT .



2D systems: Kosterlitz-Thouless transition (V)

An important prediction of the Kosterlitz-Thouless transition is that,
contrary to the 3D case, in 2D the superfluid fraction ns/n jumps to zero
above a critical temperature.
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For 3D superfluids the transition to the normal state is a BEC phase
transition, while in 2D superfluids the transition to the normal state is
something different: a topological phase transition.


