Physics of solitons and solitons in optical fibers

History of solitons (I)

The $19^{\text {th }}$ century and the firts half of the $20^{\text {th }}$ century were the triumph of linear physics: theoretical approaches were trying to avoid nonlinearities treating them as perturbations of linear theories.

In the second half of the $\mathbf{2 0}^{\text {th }}$ century the importance of an intrinsic analysis of nonlinear phenomena has been gradually understood and led to two concepts that revolutionalised prevoius ideas:

- Strange attractor: linked to chaos of systems with a small number of degrees of freedom and that are described by deterministic equations
- Soliton: linked to collective effects leading to spatially coherent structures resulting in self-organization of systems with a very large number of degrees of freedom
- It's a solitary wave (=spatially localized) with spectacular stability properties
- Its name make it seem a particle: it's a local maximum of energy density preserving shape and velocity as it moves
So, what is a soliton?
- It corresponds to a solution of a classical field equation which simultaneously exhibits wave and quasi-particle properties
- Equations with soliton solutions are completely integrable systems with an infinite number of degrees of freedom [1]

History of solitons (II)

- 1834: first observation [2] by John Scott Russell, an hydrodinamic engineer, who devoted 10 years of research to solitons (only to find that linearised approaches were showing their non-existence)
- 1895: theory describing solitons thanks to an equation derived by Korteweg and de Vries [3]
- 1953: numerical experiment performed by Fermi, Pasta and Ulam with one of the first computer in Los Alamos (the result seemed to contradict thermodynamics)
- 1965: solitons explain the latter phenomenon, as demonstrated by Zabusky and Kruskal [4]
- 1973: Non Linear Schrodinger Equation (NLSE) for an optical fiber was proposed by Hasegawa and Tappert [5,6]
- 1980: experimental checks by Mollenauer, Stolen and Islam [7]

Solitary wave recreated in the Union Canal near Edimburgh in 1995, 161 years after John Scott Russell's discovery of what he called 'The great solitary wave' (Picture: Chris Eilbeck \& Heriot-Watt University, 1995)
[2] Russell, J.S., Rep. $14^{\text {th }}$ Meet. Br. Ass. Adv. Sc. 25, 311-90 (1844).
[3] Korteweg, D.J., de Vries, G., Phyl. Mag. 5th Series 36, 422-43 (1895).
[4] Zabusky, N.J., Kruskal, M.D., Phys. Rev. Lett. 15, 240-3 (1965).
[5] Hasegawa, A., Tappert, F., Appl. Phys. Lett. 23.3, 142-144 (1973).
[6] Hasegawa, A.J., Tappert, F., Appl. Phys. Lett. 23, 171-2 (1973).
[7] Mollenauer, L.F., Stolen, R.H., Islam, M.N., Phys. Rev. Lett. 45, 1095-8 (1980).

The discovery (I)

- First observation of a soliton was made in 1834 by the hydrodynamic engineer John Scott Russell while he was riding his horse along a canal near Edimburgh. The description that he gave was the following:
"I was observing the motion of a boat which was rapidly drawn along a narrow channel by a pair of horses, when the boat suddenly stopped - not so the mass of water in the channel which it had put in motion; it accumulated round the prow of the vessel in a state of violent agitation, then suddenly leaving it behind, rolled forward with great velocity, assuming the form of a large solitary elevation, a rounded, smooth and well defined heap of water, which continued its course along the channel, apparently without change of form or diminution of speed. I followed it on horseback and overtook it still rolling on at a rate of some eight or nine miles an hour, preserving its original figure some thirty feet long and a foot to a foot and a half in height. Its height gradually diminished and after a chase of one or two miles I lost it in the winding of the channel. Such in the month of August 1834 was my first chance interview with that singular and beautiful phenomenon which I have called the Wave of Translation."

The discovery (II)

- Russell then devoted 10 years of research to solitons experimenting in canals, rivers, lakes and his backyard 10 m long tank, observing the following features [2]:
- Depending on its amplitude, the initial perturbation can create one, two or several solitary waves;
- Nonlinear waves have a speed higher than the speed $c_{0}=\sqrt{g h}$ of long-wavelength linear waves $v=c_{0}(1+A \eta)$ where $A>0$;
- There are no solitary waves with a negative amplitude.
- Airy and Stokes strongly criticized Russell's work, who stopped his research in this field
- De Boussinesq theory of shallow water waves had solutions which agreed whit Russell's observations and these results were confirmed by Lord Rayleigh in 1876
- De Saint Venant in 1885 established a correct mathematical theory for these phenomena, which explained Airy and Stokes' mistakes

Schematic picture of the time evolution of a perturbation of the water surface in a reservoir, driven by a piston moving downward or upward. [1]

The Korteweg-de Vries equation (I)

The Korteweg-de Vries (KdV) equation:

- is derived from the Euler equation for a nonviscous and incrompressible fluid, the boundary conditions at the bottom and at the surface and the assumption of an irrotational flow;
- is valid in the weakly nonlinear case;
- $c_{0}=\sqrt{g h}$ speed of long-wavelength linear waves, h depth of the fluid, $\eta(x, t)$ height of the surface above its equilibrium level.

$$
\text { Frame moving at } c_{0}: X=x-c_{0} t \text { and } T=t
$$

$$
\text { Dimensionless variables: } \phi=\frac{\eta}{h}, \zeta=\frac{X}{X_{0}}, \tau=\frac{T}{T_{0}}
$$

$$
\text { Solution } A>0
$$

Comparison between solitons having different amplitudes A. The left pulse, having moderate amplitude and speed, is broader than the faste right pulse, being $L=\sqrt{2 / A}$. [1]

$$
\begin{gathered}
\frac{1}{c_{0}} \frac{\partial \eta}{\partial t}+\frac{\partial \eta}{\partial x}+\frac{3}{2 h} \eta \frac{\partial \eta}{\partial x}+\frac{h^{2}}{6} \frac{\partial^{3} \eta}{\partial x^{3}}=0 \\
\frac{1}{c_{0}} \frac{\partial \eta}{\partial T}+\frac{3}{2 h} \eta \frac{\partial \eta}{\partial X}+\frac{h^{2}}{6} \frac{\partial^{3} \eta}{\partial X^{3}}=0 \\
\frac{\partial \phi}{\partial \tau}+6 \phi \frac{\partial \phi}{\partial \xi}+\frac{\partial^{3} \phi}{\partial \xi^{3}}=0 \\
\phi=A \operatorname{sech}^{2}\left[\sqrt{\frac{A}{2}}(\xi-2 A \tau)\right]
\end{gathered}
$$

Solution in the laboratory frame $\eta_{0}>0$

$$
\text { being } L=\sqrt{2} / A \text {. [1] }
$$

$$
\eta=\eta_{0} \operatorname{sech}^{2}\left[\frac{1}{2 h} \sqrt{\frac{3 \eta_{0}}{h}}\left(x-c_{0}\left[1+\frac{\eta_{0}}{2 h}\right] t\right)\right]
$$

The Korteweg-de Vries equation (II)

$$
\frac{\partial \phi}{\partial \tau}+\phi \frac{\partial \phi}{\partial \xi}=0
$$

- Also called Burgers-Hopf equation;
- In analogy with a linear differential equation, ϕ is the speed of each component of the signal;
- The parts of the signal with largest amplitude ϕ move faster than the parts with a smaller amplitude;
- The nonlinear term $\phi(\partial \phi / \partial \xi)$ tends to promote the formation of steep fronts (or shock waves).

Equilibrium between nonlinearity and dispersion gives rise to a permanent profile soliton solution: this equilibrium is stable

$$
\frac{\partial \phi}{\partial \tau}+\frac{\partial^{3} \phi}{\partial \xi^{3}}=0
$$

- Linearization of the KdV;
- Plane wave solutions of the form $\phi=A e^{i(q \xi-\omega \tau)}$ provided the dispersion relation $\omega=-q^{3}$;
- The waves have a phase velocity $v_{\varphi}=\omega / q \propto q^{2}$;
- Thus we're dealing with a dispersive medium in which the Fourier components of a pulse propagate at different speeds, causing the broadening of the pulse.

The Korteweg-de Vries equation (III)

Permanent profile solutions propagate at speed v while preserving their shape, therefore they can be written as $\phi(\xi, \tau)=\phi(\xi-v \tau)=\phi(z)$ and the KdV becomes, using the notation $\phi_{z}=\partial \phi / \partial z$:

$$
\begin{gathered}
\begin{array}{c}
-v \phi_{z}+6 \phi \phi_{z}+\phi_{z z z}=0 \\
\frac{d}{d z}\left(-v \phi+3 \phi^{2}+\phi_{z z}\right)=0 \\
\phi_{z z}+3 \phi^{2}-v \phi+c_{1}=0 \\
\frac{1}{2} \phi_{z}^{2}+\phi^{3}-\frac{1}{2} v \phi^{2}+c_{1} \phi=c_{2} \\
\frac{1}{2} \phi_{z}^{2}+V_{e f f}(\phi)=c_{2}
\end{array} \quad \text { with } \quad V_{e f f}(\phi)=\phi^{3}-\frac{1}{2} v \phi^{2}+c_{1} \phi \\
\text { Integrating in } z \\
\text { f the effective potential } V_{e f f}(\phi)
\end{gathered}
$$

The Korteweg-de Vries equation (IV)

Soliton solutions are spatially localised solutions, meaning that $\phi, \phi_{z}, \phi_{z z} \rightarrow 0$ when $z \rightarrow \infty$, thus it implies $c_{1}=c_{2}=0$ and

Shape of the effective potential $V_{e f f}(\phi)$ for $v>0$ (a) and $v<0$ (b). [1]

$$
\frac{1}{2} \phi_{z}^{2}+\phi^{3}-\frac{1}{2} v \phi^{2}=0
$$

Variables separation

$$
d z=\frac{d \phi}{\sqrt{v \phi^{2}-2 \phi^{3}}}
$$

Integrating with the change of variable $\phi=\frac{v \operatorname{sech}^{2} u}{2}$

$$
\phi=\frac{v}{2} \operatorname{sech}^{2}\left(\sqrt{\frac{v}{4}} z\right)
$$

Soliton solution

- $v>0$: particle at rest can leave the origin $\phi=0$ only moving towards the positive side (no negative ϕ amplitude solutions);
- $v<0$: no constant energy bounded motion for a particle at rest leaving the origin $\phi=0$
\Rightarrow hydrodynamic solitons are always supersonic

It can be demonstrated that dropping the spatially localised solutions requirement, cnoidal waves become the solution that is physically relevant for hydrodinamic waves:

$$
\phi=\phi_{0}-\frac{k^{2} q^{2}}{2} \operatorname{cn}^{2}\left(\frac{q x}{2}, k\right) \quad \text { with } \quad \operatorname{cn}(x, k)=\left\{\begin{array}{c}
\cos x, k=0 \\
\operatorname{sech} x, k=1
\end{array}\right.
$$

The Korteweg-de Vries equation (V)

Besides permanent profile solutions, the KdV equation also has an infinity of other solutions called multisoliton solutions because, when $|t| \rightarrow \infty$, they tend toward a superposition of several well separated solitons.
Let us consider the two soliton solution where we introduce $X_{i}=K_{i}\left(\xi-4 K_{i}^{2} \tau\right), i=1,2$ whit $K_{1}>K_{2}$:

$$
\phi=\frac{2\left(K_{1}^{2}-K_{2}^{2}\right)}{\left(K_{1} \operatorname{coth} X_{1}-K_{2} \tanh X_{2}\right)^{2}}\left(\frac{K_{1}^{2}}{\sinh ^{2} X_{1}}+\frac{K_{2}^{2}}{\cosh ^{2} X_{2}}\right)
$$

- Solution ϕ_{2} in the vicinity of $\xi=4 K_{2}^{2} \tau$ when $\tau \rightarrow-\infty$, is identical to a single $K d V$ soliton with $\mathrm{A}_{2}=2 K_{2}^{2}$ and $v_{2}=4 K_{2}^{2}$:

$$
\phi_{2} \cong 2 K_{2}^{2} \operatorname{sech}^{2}\left(X_{2}-\Delta\right)
$$

- Solution ϕ_{1} in the vicinity of $\xi=4 K_{1}^{2} \tau$ when $\tau \rightarrow-\infty$, is identical to a single $K \mathrm{dV}$ soliton with $\mathrm{A}_{1}=2 K_{1}^{2}$ and $v_{1}=4 K_{1}^{2}$:

$$
\phi_{1} \cong 2 K_{1}^{2} \operatorname{sech}^{2}\left(X_{1}+\Delta^{\prime}\right)
$$

- In $\tau \rightarrow-\infty$ we have two different solitons and since $v_{1}>v_{2}$ we get that in $\tau \rightarrow+\infty$ soliton 1 has passed soliton 2:
- Each soliton has kept its velocity but experiences a phase shift;
- The collision isn't a simple superposition: amplitudes don't sum up.

Solitons collision: small amplitude sea waves and different amplitudes soliton simulation. [1]

The chain of coupled pendula

Let us consider a chain of coupled pendula, moving around a common axis and linked to the neighbors by torsional springs:

$$
\mathcal{H}=\sum_{n} \frac{I}{2}\left(\frac{d \theta_{n}}{d t}\right)^{2}+\frac{C}{2}\left(\theta_{n}-\theta_{n-1}\right)^{2}+m g l\left(1-\cos \theta_{n}\right)
$$

Considering the momentum $p_{n}=I \dot{\theta}_{n}$ and the hamiltonian equations

$$
\frac{d \theta_{n}}{d t}=\frac{\partial \mathcal{H}}{\partial p_{n}} \quad \text { and } \quad \frac{d p_{n}}{d t}=-\frac{\partial \mathcal{H}}{\partial \theta_{n}}
$$

we get the nonlinear coupled differential equations

$$
I \frac{d^{2} \theta_{n}}{d t^{2}}-C\left(\theta_{n+1}+\theta_{n-1}-2 \theta_{n}\right)+m g l \sin \theta_{n}=0
$$

Solution are found in the continuum limit approximation: $\theta_{n}-\theta_{n-1} \ll 1$ allows to Taylor expand

$$
\theta_{n+1}+\theta_{n-1}-2 \theta_{n} \cong a^{2} \frac{\partial^{2} \theta}{\partial x^{2}}+\mathcal{O}\left(a^{4} \frac{\partial^{4} \theta}{\partial x^{4}}\right)
$$

and introducing the quantities

$$
\omega_{0}^{2}=\frac{m g l}{I} \quad \text { and } \quad c_{0}^{2}=\frac{C a^{2}}{I}
$$

we get the partial differential equation known as the sine-Gordon (SG) equation:

$$
\frac{\partial^{2} \theta}{\partial t^{2}}-c_{0}^{2} \frac{\partial^{2} \theta}{\partial x^{2}}+\omega_{0}^{2} \sin \theta=0
$$

Scheme of a chain of coupled pendula. [1]

The sine-Gordon equation (I)

A pendulum of the chain is subject to the potential

$$
V(\theta)=m g l(1-\cos \theta)
$$

so that the energy landscape oscillates regularly, with several energetically degenerate ground states in $\boldsymbol{\theta}=2 \boldsymbol{p} \pi, \boldsymbol{p} \in \mathbb{Z}$. This suggests the existence of families of solutions of the SG equation:

- Case 1

Solutions staying within a single potential valley

$$
\lim _{x \rightarrow+\infty} \theta-\lim _{x \rightarrow-\infty} \theta=0
$$

- Case 2

Solutions moving from one valley to the other

$$
\lim _{x \rightarrow+\infty} \theta-\lim _{x \rightarrow-\infty} \theta=2 p \pi \quad(p \neq 0)
$$

Topology of the potential energy landscape of the SG model. [1]

Solutions are topologically different because their difference is a property of the whole solution: one must look at the whole chain of pendula to see a full turn from one end to the other of case 2. The particular case of $\theta \ll 2 \pi$ falls into case 1 and it's called the small amplitude regime. We can take the linear limit $\sin \theta \approx \theta$ such that the SG equation reduces to

with plane waves solutions $\theta=\theta_{0} e^{i(q x-\omega t)}+c$.c. and dispersion relation $\omega^{2}=\omega_{0}^{2}+c_{0}^{2} q^{2} \propto q^{2} \Rightarrow$ dispersive waves

The sine-Gordon equation (II)

Let us look for permanent profile solutions of the SG equation, moving at velocity v and depending on the variable $z=x-v t$:

$$
\begin{gathered}
v^{2} \frac{d^{2} \theta}{d z^{2}}-c_{0}^{2} \frac{d^{2} \theta}{d z^{2}}+\omega_{0}^{2} \sin \theta=0 \\
\frac{d^{2} \theta}{d z^{2}}=\frac{\omega_{0}^{2}}{c_{0}^{2}-v^{2}} \sin \theta \\
\frac{1}{2}\left(\frac{d \theta}{d z}\right)^{2}=-\frac{\omega_{0}^{2}}{c_{0}^{2}-v^{2}} \cos \theta+C_{1} \\
\frac{1}{2}\left(\frac{d \theta}{d z}\right)^{2}-\frac{\omega_{0}^{2}}{c_{0}^{2}-v^{2}}(1-\cos \theta)=0
\end{gathered}
$$

Collecting the derivative in z
Multiplying by $d \theta / d z$ and integrating in z
$\left\{\begin{array}{l}\text { Imposing } \lim _{|z| \rightarrow \infty} \theta(z)=0(\bmod 2 \pi) \\ \text { and } \lim _{|z| \rightarrow \infty} d \theta / d z=0 \text { we get }\end{array}\right.$
$C_{1}=\omega_{0}^{2} /\left(c_{0}^{2}-v^{2}\right)$
The solution $\theta(z)$ describes the motion of a fictitious particle having zero total energy in the potential

$$
V_{e f f}(\theta)=-\frac{\omega_{0}^{2}}{c_{0}^{2}-v^{2}}(1-\cos \theta)
$$

Possible motion of a particle leaving $\theta=0$ at rest \Rightarrow solitons travel at $v<c_{0}$

A particle initially at rest in $\theta=0$ cannot move \Rightarrow no permanent profile solution within same valley

The sine-Gordon equation (III)

Soliton (a) and antisoliton (b)
solutions of the SG equation. [1]

$$
\begin{gathered}
\frac{1}{2}\left(\frac{d \theta}{d z}\right)^{2}-\frac{\omega_{0}^{2}}{c_{0}^{2}-v^{2}}(1-\cos \theta)=0 \\
\frac{\sqrt{2} \omega_{0}}{\sqrt{c_{0}^{2}-v^{2}}} d z= \pm \frac{d \theta}{\sqrt{1-\cos \theta}} \quad \text { Variables separation } \\
\frac{\sqrt{2} \omega_{0}}{\sqrt{c_{0}^{2}-v^{2}}}\left(z-z_{0}\right)= \pm \int \frac{d \theta}{\sqrt{2} \sin (\theta / 2)} \quad(0<\theta<2 \pi)
\end{gathered}
$$

$$
\text { Using } t=\tan (\theta / 4) \quad \int \frac{d \theta}{\sqrt{2} \sin (\theta / 2)}=\frac{1}{\sqrt{2}} \int \frac{4 d t}{1+t^{2}} \frac{1+t^{2}}{2 t}=\sqrt{2} \int \frac{d t}{t}=\sqrt{2} \ln t
$$

$$
\left.\frac{\omega_{0}}{\sqrt{c_{0}^{2}-v^{2}}}\left(z-z_{0}\right)= \pm \ln \tan \frac{\theta}{4}\right) \text { Expliciting } \theta
$$

$$
\theta=4 \arctan \exp \left[\pm \frac{\omega_{0}}{c_{0}} \frac{z-z_{0}}{\sqrt{1-v^{2} / c_{0}^{2}}}\right]
$$

- + sign
- Kink
- Antisoliton
- - sign

Validity condition: $v^{2}<c_{0}^{2}$

- Antikink

The sine-Gordon equation (IV)

The pendulum chain exhibits a 2π torsion when it carries a soliton (Picture: Thierry Dauxois \& Bruno Issenman, 2003)

A frozen kink, which was naturally created by snow fallen on a horizontal bar (Picture: Thierry Cretegny, 2001)

The sine-Gordon equation (V)

- Solitons and antisolitons differ by their topological charge \boldsymbol{Q}, which is a conserved quantity (stability)

$$
Q=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \frac{\partial \theta}{\partial x} d x=\frac{1}{2 \pi}\left[\lim _{x \rightarrow+\infty} \theta(x, t)-\lim _{x \rightarrow-\infty} \theta(x, t)\right]=\left\{\begin{array}{rr}
+1 & \text { soliton } \\
-1 & \text { antisoliton }
\end{array}\right.
$$

- Validity of solutions $\theta=4 \arctan \exp \left[\pm \frac{x-v t}{L}\right]$ in a discrete chain are measured through their spatial extent $L=\frac{c_{0}}{\omega_{0}} \sqrt{1-\frac{v^{2}}{c_{0}^{2}}}$
- Width of the soliton tends to zero when $v \rightarrow c_{0}$: Lorentz contraction as in relativity;
- The width of a soliton at rest is $L_{0}=\frac{c_{0}}{\omega_{0}}=a \sqrt{\frac{c}{m g l}}$: continuum limit is valid if $L_{0} / a \gg 1 \Rightarrow \mathrm{C} \gg m g l$ strong coupling.
- In the continuum limit, the energy of the soliton is obtained from the hamiltonian density $h=\mathcal{H} / a \propto \operatorname{sech}^{2}\left(z-z_{0}\right)$:

$$
E=\int_{-\infty}^{+\infty} h(x, t) d x=\frac{8 I \omega_{0} c_{0}}{a \sqrt{1-v^{2} / c_{0}^{2}}}
$$

Nonlinear waves in the pendulum chain (I)

Let us consider again the SG equation in the continuum limit, where we use the shortened notation $\frac{\partial^{2} \theta}{\partial t^{2}}=\theta_{t t}$ and $\frac{\partial^{2} \theta}{\partial x^{2}}=\theta_{x x}$

$$
\theta_{t t}-c_{0}^{2} \theta_{x x}+\omega_{0}^{2} \sin \theta=0
$$

Let us analyse the medium-amplitude regime, where a weak nonlinearity comes into play from the Taylor expansion

$$
\sin \theta=\theta-\frac{\theta^{3}}{6}+\mathcal{O}\left(\theta^{5}\right)
$$

We expect plane waves to self-modulate due to nonlinearity: wave packets behave like solitons made of a carrier wave with fast time-space variation and of a slower envelope signal: multiple scale expansion method with θ as a perturbative series of functions ϕ_{i} of the independent variables $T_{i}=\varepsilon^{i} t$ and $X_{i}=\varepsilon^{i} x$:

$$
\theta(x, t)=\varepsilon \sum_{i=0}^{\infty} \varepsilon_{i} \phi_{i}\left(X_{0}, X_{1}, X_{2}, \ldots, T_{0}, T_{1}, T_{2}, \ldots\right)
$$

Successive stages of the self-modulation of a plane wave: solid line is the carrier wave, dashed line is the envelope. [1]

Nonlinear waves in the pendulum chain (II)

Introducing the notation $D_{i}=\partial / \partial T_{i}$ and $D_{X_{i}}=\partial / \partial X_{i}$ we get

$$
\begin{gathered}
\frac{\partial^{2}}{\partial t^{2}}=\left(D_{0}+\varepsilon D_{1}+\varepsilon^{2} D_{2}+\cdots\right)^{2}=D_{0}^{2}+2 \varepsilon D_{0} D_{1}+\varepsilon^{2}\left(D_{1}^{2}+2 D_{0} D_{2}\right)+\cdots, \\
\frac{\partial^{2}}{\partial x^{2}}=\left(D_{X_{0}}+\varepsilon D_{X_{1}}+\varepsilon^{2} D_{X_{2}}+\cdots\right)^{2}=D_{X_{0}}^{2}+2 \varepsilon D_{X_{0}} D_{X_{1}}+\varepsilon^{2}\left(D_{X_{1}}^{2}+2 D_{X_{0}} D_{X_{2}}\right)+\cdots .
\end{gathered}
$$

Inserting the expansion $\theta=\varepsilon \phi_{0}+\varepsilon^{2} \phi_{1}+\varepsilon^{3} \phi_{2}+\cdots$ into the SG equation $\theta_{t t}-c_{0}^{2} \theta_{x x}+\omega_{0}^{2} \theta-\omega_{0}^{2} \theta^{3} / 6=0$ we get:

- At order ε :

$$
\left(D_{0}^{2}-c_{0}^{2} D_{X_{0}}^{2}+\omega_{0}^{2}\right) \phi_{0}=\hat{L} \phi_{0}=0
$$

linear in ϕ_{0} with plane waves solutions

$$
\phi_{0}=A\left(X_{1}, T_{1}, X_{2}, T_{2}, \ldots\right) e^{i\left(q X_{0}-\omega T_{0}\right)}+c . c .
$$

and dispersion relation

$$
\omega^{2}=\omega_{0}^{2}+c_{0}^{2} q^{2} .
$$

Plane waves can be stable ($P Q<0$) or subject to modulational instability ($P Q>0$), where a small perturbation leads to a train of solitons, depending on the system condition.

Nonlinear waves in the pendulum chain (III)

Introducing the notation $D_{i}=\partial / \partial T_{i}$ and $D_{X_{i}}=\partial / \partial X_{i}$ we get

$$
\begin{gathered}
\frac{\partial^{2}}{\partial t^{2}}=\left(D_{0}+\varepsilon D_{1}+\varepsilon^{2} D_{2}+\cdots\right)^{2}=D_{0}^{2}+2 \varepsilon D_{0} D_{1}+\varepsilon^{2}\left(D_{1}^{2}+2 D_{0} D_{2}\right)+\cdots, \\
\frac{\partial^{2}}{\partial x^{2}}=\left(D_{X_{0}}+\varepsilon D_{X_{1}}+\varepsilon^{2} D_{X_{2}}+\cdots\right)^{2}=D_{X_{0}}^{2}+2 \varepsilon D_{X_{0}} D_{X_{1}}+\varepsilon^{2}\left(D_{X_{1}}^{2}+2 D_{X_{0}} D_{X_{2}}\right)+\cdots .
\end{gathered}
$$

Inserting the expansion $\theta=\varepsilon \phi_{0}+\varepsilon^{2} \phi_{1}+\varepsilon^{3} \phi_{2}+\cdots$ into the SG equation $\theta_{t t}-c_{0}^{2} \theta_{x x}+\omega_{0}^{2} \theta-\omega_{0}^{2} \theta^{3} / 6=0$ we get:

- At order ε^{2} :

$$
D_{0}^{2} \phi_{1}+2 D_{0} D_{1} \phi_{0}-c_{0}^{2} D_{X_{0}}^{2} \phi_{1}-2 c_{0}^{2} D_{X_{0}} D_{X_{1}} \phi_{0}+\omega_{0}^{2} \phi_{1}=0
$$

that we rewrite separating ϕ_{0} and ϕ_{1} and introducing $\sigma=q X_{0}-\omega T_{0}$

$$
\hat{L} \phi_{1}=-2 D_{0} D_{1} \phi_{0}-2 c_{0}^{2} D_{X_{0}} D_{X_{1}} \phi_{0}=2 i \omega \frac{\partial A}{\partial T_{1}} e^{i \sigma}+2 i q c_{0}^{2} \frac{\partial A}{\partial X_{1}} e^{i \sigma}+c . c .
$$

We found a linear equation driven by resonance terms $e^{i \sigma}$, who make the responce grow linearly with time: we thus need the solvability condition:

$$
\frac{\partial A}{\partial T_{1}}+\frac{q c_{0}^{2}}{\omega} \frac{\partial A}{\partial X_{1}}=0 \Rightarrow \frac{\partial A}{\partial T_{1}}+v_{g} \frac{\partial A}{\partial X_{1}}=0 \Rightarrow A\left(X_{1}, T_{1}, X_{2}, T_{2}, \ldots\right)=A\left(X_{1}-v_{g} T_{1}, X_{2}, T_{2}, \ldots\right)
$$

At this orderwe get the solution $\phi_{1}=0$ or $\phi_{1} \propto \phi_{0}$, thus no new terms add to the general solution

Nonlinear waves in the pendulum chain (IV)

Introducing the notation $D_{i}=\partial / \partial T_{i}$ and $D_{X_{i}}=\partial / \partial X_{i}$ we get

$$
\begin{gathered}
\frac{\partial^{2}}{\partial t^{2}}=\left(D_{0}+\varepsilon D_{1}+\varepsilon^{2} D_{2}+\cdots\right)^{2}=D_{0}^{2}+2 \varepsilon D_{0} D_{1}+\varepsilon^{2}\left(D_{1}^{2}+2 D_{0} D_{2}\right)+\cdots, \\
\frac{\partial^{2}}{\partial x^{2}}=\left(D_{X_{0}}+\varepsilon D_{X_{1}}+\varepsilon^{2} D_{X_{2}}+\cdots\right)^{2}=D_{X_{0}}^{2}+2 \varepsilon D_{X_{0}} D_{X_{1}}+\varepsilon^{2}\left(D_{X_{1}}^{2}+2 D_{X_{0}} D_{X_{2}}\right)+\cdots .
\end{gathered}
$$

Inserting the expansion $\theta=\varepsilon \phi_{0}+\varepsilon^{2} \phi_{1}+\varepsilon^{3} \phi_{2}+\cdots$ into the SG equation $\theta_{t t}-c_{0}^{2} \theta_{x x}+\omega_{0}^{2} \theta-\omega_{0}^{2} \theta^{3} / 6=0$ we get:

- At order ε^{3} :

$$
\hat{L} \phi_{2}=-D_{1}^{2} \phi_{0}-2 D_{0} D_{2} \phi_{0}+c_{0}^{2} D_{X_{1}}^{2} \phi_{0}+2 c_{0}^{2} D_{X_{0}} D_{X_{2}} \phi_{0}+\omega_{0}^{2} / 6 \phi_{0}^{3}-2 D_{0} D_{1} \phi_{1}+c_{0}^{2} D_{X_{0}} D_{X_{1}} \phi_{1}
$$

We found another driven linear equation whose terms $e^{i \sigma}$ lead to divergence: to avoid it we impose the solvability condition

$$
-\frac{\partial^{2} A}{\partial T_{1}^{2}}+2 i \omega \frac{\partial A}{\partial T_{2}}+c_{0}^{2} \frac{\partial^{2} A}{\partial X_{1}^{2}}+2 i q c_{0}^{2} \frac{\partial A}{\partial X_{2}}+\frac{3}{6} \omega_{0}^{2}|A|^{2} A=0
$$

Moving to a frame at velocity v_{g} with the variables $\xi_{i}=X_{i}-v_{g} T_{i}$ and $\tau_{i}=T_{i}$ getting $\frac{\partial A}{\partial T_{i}}=\frac{\partial A}{\partial \tau_{i}}-v_{g} \frac{\partial A}{\partial \xi_{i}}$ and $\frac{\partial A}{\partial X_{i}}=\frac{\partial A}{\partial \xi_{i}}$, thus

$$
\begin{aligned}
\left(c_{0}^{2}-v_{g}^{2}\right) \frac{\partial^{2} A}{\partial \xi_{1}^{2}}+ & 2 i \omega\left(\frac{\partial A}{\partial \tau_{2}}-v_{g} \frac{\partial A}{\partial \xi_{2}}\right)+2 i q c_{0}^{2} \frac{\partial A}{\partial \xi_{2}}+\frac{1}{2} \omega_{0}^{2}|A|^{2} A=0 \\
& i \frac{\partial A}{\partial \tau_{2}}+\frac{c_{0}^{2}-v_{g}^{2}}{2 \omega} \frac{\partial^{2} A}{\partial \xi_{1}^{2}}+\frac{\omega_{0}^{2}}{4 \omega}|A|^{2} A=0 \quad \begin{array}{l}
\text { We got the nonlinear Schrödinger } \\
\text { equation (NLSE) for the envelope } A
\end{array}
\end{aligned}
$$

The nonlinear Schrödinger equation (I)

Let us rewrite the nonlinear Schrödinger equation (NLSE) in its usual form

$$
i \frac{\partial \psi}{\partial t}+P \frac{\partial^{2} \psi}{\partial x^{2}}+Q|\psi|^{2} \psi=0
$$

where $P>0$ and Q depend on the particular studied problem. It's the potential term $-Q|\psi|^{2}$ that gives the denomination nonlinear to this equation and we will see that for $\boldsymbol{Q}>\mathbf{0}$, the solution ψ is localised such that it 'digs' its own potential well. Let us look for solutions of the form

$$
\psi=\phi(x, t) e^{i \theta(x, t)}
$$

where we suppose that both the carrier wave θ and the envelope ϕ are permanent profile solutions with different velocities

$$
\phi(x, t)=\phi\left(x-u_{e} t\right) \quad \text { and } \quad \theta(x, t)=\theta\left(x-u_{p} t\right) .
$$

Inserting the solutions into the NLSE and separating the real and imaginary part, we get:

$$
\begin{array}{cc}
-\phi \theta_{t}+P \phi_{x x}-P \phi \theta_{x}^{2}+Q \phi^{3}=0 \\
\phi_{t}+P \phi \theta_{x x}+2 P \phi_{x} \theta_{x}=0 & \Rightarrow
\end{array} \begin{gathered}
u_{p} \phi \theta_{x}+P \phi_{x x}-P \phi \theta_{x}^{2}+Q \phi^{3}=0 \tag{2}\\
-u_{e} \phi_{x}+P \phi \theta_{x x}+2 P \phi_{x} \theta_{x}=0
\end{gathered}
$$

Multiplying (2) by ϕ and integrating in x gives

$$
-\frac{u_{e}}{2} \phi^{2}+P \phi^{2} \theta_{x}=C
$$

Since we are focusing to spatially localized solutions, we impose the boundary conditions $\lim _{|x| \rightarrow \infty} \phi=\lim _{|x| \rightarrow \infty} \phi_{x}=0$ getting $C=0$

$$
\theta_{x}=\frac{u_{e}}{2 P}
$$

The nonlinear Schrödinger equation (II)

$$
\begin{aligned}
& \text { Integrating } \\
& \text { Inserting the latter into (1) we get } \\
& \frac{u_{e} u_{p}}{2 P} \phi+P \phi_{x x}-\frac{u_{e}^{2}}{4 P} \phi+Q \phi^{3}=0 \\
& \frac{P^{2}}{2} \phi_{x}^{2}+\frac{P Q}{4} \phi^{4}-\frac{u_{e}^{2}-2 u_{e} u_{p}}{8} \phi^{2}=0 \\
& \frac{P^{2}}{2} \phi_{x}^{2}+V_{e f f}(\phi)=0 \\
& \phi=\phi_{0} \operatorname{sech}\left[\sqrt{\frac{Q}{2 P}} \phi_{0}\left(x-u_{e} t\right)+\operatorname{arcsech} \frac{\phi(0,0)}{\phi_{0}}\right] \\
& \psi(x, t)=\phi_{0} \operatorname{sech}\left[\sqrt{\frac{Q}{2 P}} \phi_{0}\left(x-u_{e} t\right)\right] e^{i \frac{u_{e}}{2 P}\left(x-u_{p} t\right)} \\
& \text { Multiplying by } P \phi_{x} \\
& \text { and integrating in } x \\
& \text { Recognizing } V_{e f f}(\phi) \\
& \psi=\phi_{0} \operatorname{sech}\left(\frac{x-u_{e} t}{L_{e}}\right) e^{i(\kappa x-\mu t)} \\
& L_{e}=\frac{1}{\phi_{0}} \sqrt{\frac{2 P}{Q}}, \quad \kappa=\frac{u_{e}}{2 P}, \quad \mu=\frac{u_{e} u_{p}}{2 P}
\end{aligned}
$$

[^0]
The nonlinear Schrödinger equation (II)

Shape of the effective potential $V_{e f f}(\phi)$ for $P Q>0$ (a) and $P Q<0$ (b). [1]

$V_{e f f}(\phi)=\frac{P Q}{4} \phi^{4}-\frac{u_{e}^{2}-2 u_{e} u_{p}}{8} \phi^{2}$

- $\phi \in \mathbb{R} \Rightarrow \phi_{x}^{2} \geq 0 \Rightarrow V_{e f f}(\phi) \leq 0$
- $\lim _{\phi \rightarrow 0} V_{e f f}(\phi) \propto \phi^{2} \Rightarrow$
$u_{e}^{2}-2 u_{e} u_{p} \geq 0 \Rightarrow u_{e} \neq u_{p}$
no permanent profile solution
- Bounded motion for $\boldsymbol{P Q}>\mathbf{0}$
- $\phi_{0}=\sqrt{\left(u_{e}^{2}-2 u_{e} u_{p}\right) / 2 P Q}$

$$
\phi=\phi_{0} \operatorname{sech}\left[\sqrt{\frac{Q}{2 P}} \phi_{0}\left(x-u_{e} t\right)+\operatorname{arcsech} \frac{\phi(0,0)}{\phi_{0}}\right]
$$

$$
\psi(x, t)=\phi_{0} \operatorname{sech}\left[\sqrt{\frac{Q}{2 P}} \phi_{0}\left(x-u_{e} t\right)\right] e^{i \frac{u_{e}}{2 P}\left(x-u_{p} t\right)}
$$

Integrating
Inserting the latter into (1) we get
Multiplying by $P \phi_{x}$ and integrating in x

Recognizing $V_{e f f}(\phi)$

$$
-\frac{P^{2}}{2} \phi_{x}^{2}+V_{e f f}(\phi)=0
$$

Integrating with the change of variable $\phi=\phi_{0} \operatorname{sech} v$

Putting the center of the soliton $\phi=\phi_{0}$ at $x=0$ when $t=0$

Soliton solution

Solitons in optical fibers (I)

Optical fiber communication is one of the main applications of solitons
When a signal propagates in an optical fibre, nonlinear effects become important because:

- small cross section $\sim 10^{-6} \mathrm{~cm}^{2} \Rightarrow$ high power densities $\sim \mathrm{MW} / \mathrm{cm}^{2}$;
- long distances makes nonlinear terms no longer negligible.

Optical fibers are made of an isotropic medium $\Rightarrow \chi^{(2)}=0$ and $\chi^{(3)} \neq 0$ where the THG contribute is negligible wrt OKE

$$
\vec{P}(\vec{r}, t)=\varepsilon_{0} \chi^{(1)}(\omega) \overrightarrow{E_{0}}(r) e^{-i(\vec{k} \cdot \vec{r}-\omega t)}+\varepsilon_{0} \chi^{(3)}(\omega) \overrightarrow{E_{0}}\left|\overrightarrow{E_{0}}\right|^{2} e^{-i(\vec{k} \cdot \vec{r}-\omega t)}
$$

To find the structure of the wave in the fiber, we start from Maxwell's equations

$$
\vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \quad \text { and } \quad \vec{\nabla} \times \vec{H}=-\frac{\partial \vec{D}}{\partial t}
$$

that together give the wave equation

$$
\nabla^{2} \vec{E}-\vec{\nabla}(\vec{\nabla} \cdot \vec{E})-\frac{1}{\varepsilon_{0} c^{2}} \frac{\partial^{2} \vec{D}}{\partial t^{2}}=0
$$

Focusing on the propagation in the transverse direction of the fiber, thus over small distances, it is sufficient to consider the linear part of the polarization into $\vec{D}=\varepsilon_{0} \vec{E}+\vec{P}=\varepsilon_{0} \vec{E}+\varepsilon_{0} \chi^{(1)} \vec{E}=\varepsilon(\omega) \vec{E}(\vec{r}, t)$ giving

$$
\nabla^{2} \vec{E}(\vec{r}, \omega)+\frac{\omega^{2}}{\varepsilon_{0} c^{2}} \varepsilon(\vec{r}, \omega) \vec{E}(\vec{r}, \omega)=0
$$

with guided wave solutions and dispersion relation given by

$$
\vec{E}(\vec{r}, \omega)=\vec{U}\left(\vec{r}_{\perp}, \omega\right) e^{i(k z-\omega t)}, \quad k_{n}=\frac{\omega \beta_{n}(\omega)}{c}
$$

Solitons in optical fibers (II)

Focusing now on the propagation in the longitudinal direction of the fiber, we must account for nonlinearity

$$
\vec{D}=\varepsilon_{0} \vec{E}+\vec{P}=\varepsilon_{0} \vec{E}+\varepsilon_{0} \chi^{(1)} \vec{E}+\varepsilon_{0} \chi^{(3)}|\vec{E}|^{2} \vec{E}=\varepsilon(\vec{r}, \omega) \vec{E}(\vec{r}, \omega)+\varepsilon_{0} \chi^{(3)}|\vec{E}|^{2} \vec{E}=\vec{D}_{l}(\vec{r}, \omega)+\varepsilon_{0} \chi^{(3)}|\vec{E}|^{2} \vec{E}
$$

Thus the wave equation becomes

$$
\begin{equation*}
\nabla^{2} \vec{E}-\frac{1}{\varepsilon_{0} c^{2}} \frac{\partial^{2} \vec{D}}{\partial t^{2}}=\frac{\chi^{(3)}}{c^{2}} \frac{\partial^{2}|\vec{E}|^{2} \vec{E}}{\partial t^{2}} \tag{3}
\end{equation*}
$$

in which we want to consider a solution of the form

$$
\vec{E}(\vec{r}, t)=\phi(z, t) \vec{U}\left(\vec{r}_{\perp}, \omega_{0}\right) e^{i\left(k_{0} z-\omega_{0} t\right)}+c . c .
$$

The right hand side of (3) gives, with $|U|^{2}=1$:

$$
\begin{equation*}
\frac{\chi^{(3)}}{c^{2}} \frac{\partial^{2}|\vec{E}|^{2} \vec{E}}{\partial t^{2}} \cong-\frac{\omega_{0}^{2}}{c^{2}} \chi^{(3)}|\phi|^{2} \phi U\left(0, \omega_{0}\right) e^{i\left(k_{0} z-\omega_{0} t\right)} \tag{4}
\end{equation*}
$$

The first term of the left hand side gives:

$$
\begin{align*}
& \nabla^{2} \vec{E}=\nabla^{2} \phi U e^{i\left(k_{0} z-\omega_{0} t\right)}+2 \vec{\nabla} \phi \vec{\nabla} U e^{i\left(k_{0} z-\omega_{0} t\right)}+\phi \nabla^{2}\left(U e^{i\left(k_{0} z-\omega_{0} t\right)}\right) \\
& =\frac{\partial^{2} \phi}{\partial z^{2}} U e^{i\left(k_{0} z-\omega_{0} t\right)}+2 i \frac{\partial \phi}{\partial z} k_{0} U e^{i\left(k_{0} z-\omega_{0} t\right)}+\phi \nabla^{2}\left(U e^{i\left(k_{0} z-\omega_{0} t\right)}\right) \tag{5}
\end{align*}
$$

While the second term of the left hand side can be calculated in Fourier space expanding to the second order $\varepsilon(\omega)$ around ω_{0} :

$$
\begin{equation*}
\frac{\partial^{2} D(z, t)}{\partial t^{2}}=\left[-\omega_{0}^{2} \varepsilon\left(\omega_{0}\right) \phi-2 i \omega_{0}\left(\varepsilon+\frac{\omega_{0}}{2} \frac{\partial \varepsilon}{\partial \omega}\right) \frac{\partial \phi}{\partial t}+\left(\varepsilon+2 \omega_{0} \frac{\partial \varepsilon}{\partial \omega}+\frac{\omega_{0}^{2}}{2} \frac{\partial^{2} \varepsilon}{\partial \omega^{2}}\right) \frac{\partial^{2} \phi}{\partial t^{2}}\right] U\left(\omega_{0}\right) e^{i\left(k_{0} z-\omega_{0} t\right)} \tag{6}
\end{equation*}
$$

Solitons in optical fibers (III)

We now insert (4), (5) and (6) into (3) simplifyng the factor $U e^{i\left(k_{0} z-\omega_{0} t\right)}$ and noticing that the prefactor of the ϕ term vanishes. We get the equation determining the time evolution of the envelope:

$$
\frac{\partial^{2} \phi}{\partial z^{2}}+2 i k_{0} \frac{\partial \phi}{\partial z}+\frac{2 i \omega_{0}}{\varepsilon_{0} c^{2}}\left(\varepsilon+\frac{\omega_{0}}{2} \frac{\partial \varepsilon}{\partial \omega}\right) \frac{\partial \phi}{\partial t}-\frac{1}{\varepsilon_{0} c^{2}}\left(\varepsilon+2 \omega_{0} \frac{\partial \varepsilon}{\partial \omega}+\frac{\omega_{0}^{2}}{2} \frac{\partial^{2} \varepsilon}{\partial \omega^{2}}\right) \frac{\partial^{2} \phi}{\partial t^{2}}+\frac{\omega_{0}^{2}}{c^{2}} \chi^{(3)}|\phi|^{2} \phi=0
$$

$k^{2}=\frac{\omega^{2}}{c_{n}^{2}}=\frac{\omega^{2} \varepsilon(\omega)}{c^{2} \varepsilon_{0}} \longrightarrow \frac{\partial k}{\partial \omega}=\frac{1}{v_{g}}=\frac{\omega \varepsilon(\omega)}{k c^{2} \varepsilon_{0}}+\frac{1}{2 k} \frac{\omega^{2}}{c^{2} \varepsilon_{0}} \frac{\partial \varepsilon}{\partial \omega} \longrightarrow \frac{\partial}{\partial \omega}\left(\frac{k}{v_{g}}\right)=\frac{1}{v_{g}} \frac{\partial k}{\partial \omega}+k \frac{\partial}{\partial \omega}\left(\frac{1}{v_{g}}\right)=\frac{\varepsilon(\omega)}{c^{2} \varepsilon_{0}}+\frac{2 \omega}{c^{2} \varepsilon_{0}} \frac{\partial \varepsilon}{\partial \omega}+\frac{\omega^{2}}{2 c^{2} \varepsilon_{0}} \frac{\partial^{2} \varepsilon}{\partial \omega^{2}}$
Evaluating in $\omega=\omega_{0}$ the equation becomes

$$
\frac{\partial^{2} \phi}{\partial z^{2}}+2 i k_{0}\left[\frac{\partial \phi}{\partial z}+\frac{1}{v_{g}} \frac{\partial \phi}{\partial t}\right]-k_{0} \frac{\partial}{\partial \omega}\left(\frac{1}{v_{g}}\right) \frac{\partial^{2} \phi}{\partial t^{2}}-\frac{1}{v_{g}^{2}} \frac{\partial^{2} \phi}{\partial t^{2}}+\frac{\omega_{0}^{2}}{c^{2}} \chi^{(3)}|\phi|^{2} \phi=0
$$

which for the frame change $\tau=t-z / v_{g}$ and $\xi=z$ becomes the NLSE

$$
i \frac{\partial \phi}{\partial \xi}-\frac{1}{2} \frac{\partial}{\partial \omega}\left(\frac{1}{v_{g}}\right) \frac{\partial^{2} \phi}{\partial \tau^{2}}+\frac{\omega_{0}^{2}}{2 k_{0} c^{2}} \chi^{(3)}|\phi|^{2} \phi=0
$$

with soliton solutions

$$
\phi=\phi_{0} \operatorname{sech}\left[\sqrt{\frac{Q}{2 P}} \phi_{0} \xi\right] e^{i \frac{Q \phi_{0}^{2}}{2} \xi}
$$

Solitons in optical fibers (IV)

The NLSE for an optical fiber was proposed in 1973 by Hasegawa and Tappert [5,6]

FIG. 1. Comparison of linear (a) and stationary nonlinear (b)
propagation of 3 -ps optical pulses in in lass fileers.
[5]

FIG. 2. Stability of stationary nonlinear pulses under the
actions of (a) noise, (b) absorption, and (c) large perturba
[5]

[6]

Solitons in optical fibers (IV)

The NLSE for an optical fiber was proposed in 1973 by Hasegawa and Tappert [5,6] First experimental checks after two technical problems have been overcome:

- availability of mono-mode, thin, low-loss fibers;
- get the condition $P Q>0$ where NLSE has soliton solutions:
- $\chi^{(3)}>0 \Rightarrow Q>0$ always;
- to get $P>0$ we need $\frac{\partial}{\partial \omega}\left(\frac{1}{v_{g}}\right)<0$

Schematic plot of the group velocity dispersion versus the wavelength for a silica fiber. [1]

[1] Dauxois, T. and Peyrard, M., Cambridge University Press (2006).
[5] Hasegawa, A., Tappert, F., Appl. Phys. Lett. 23.3, 142-144 (1973). [6] Hasegawa, A., Tappert, F., Appl. Phys. Lett. 23, 171-2 (1973).

FIG. 1. Comparison of linear (a) and stationary nonlinear (b)
[5]

FIG. 2. Stability of stationary nonlinear pulses under the
actions of (a) noise, (t) absorption, and (c) large perturbation.

FIG. 1. Comparison of (a) linear dark pulse, (b) stationaty
noninear dark pulse, and (c) nonlinear dark pulse with
[5]
[6]

Solitons in optical fibers (V)

In 1980, Mollenauer, Stolen and Islam reported the first experimental observation in optical fibers of pulse compression and pulse splitting, that at certain critical power levels is characteristic of higher-order solitons:

- single-mode silica-glass fibers (low losses of $0.2 \mathrm{~dB} / \mathrm{km}$ at $\lambda \sim 1.3 \mu \mathrm{~m}$);
- mode-locked color-center laser (F_{2}^{+}centers in NaCl);
- autocorrelation measurement of laser and fiber output;
- power dependent trend:
- $P<0.3 \mathrm{~W}$ broadening due to dispersion
- $P<1.2 \mathrm{~W}$ narrowing up to the recovery of the

FIG. 1. Schematic of the apparatus. M_{1}, M_{2}, A_{1}, and A_{2} constitute a simple beam-aiming device. At S_{1}, the beam is split between "fiber" and laser" channels. The chopper alternately blocks the two beams before they enter the autocorrelator ($S_{2}, M_{5}, M_{6}, M_{7}, C C_{2}$, etc.); the resultant photomultiplier signals (from noncollinear second harmonic generation in the ammonium dihydrogen phosphate crystal) are then seperated out electronically. F_{1}, a slab of Si , passes $1.55-\mu \mathrm{m}$ light and rejects room light.

- $P=5 \mathrm{~W}$ reached narrowest width (2 ps)
- Broad base rises and splits up to $P=11.4 \mathrm{~W}$ with the first well resolved splitting (three-fold)
- $P=22.5 \mathrm{~W}$ five-fold splitting
- Computed NLSE solutions confirm that the observed autocorrelation traces closely agree with the behavior of $N=1,2,3,4$ solitons;
- The average power is constant: $\boldsymbol{P}_{\mathbf{0}}=P / N^{2}=1.24 \mathrm{~W}$.

FIG. 2. Below: Autocorrelation traces of the fiber output as a function of power. Above: Corresponding frequency spectra. Inset: Similar data for the direct laser output. There is no absolute intensity scale here; the various curves have been roughly normalized to a common height. Corresponding to the fiber data, from low to

Solitons in optical fibers (VI)

- In 1974, Satsuma and Yajima [8] studied the time evolution of the single soliton initial condition

$$
\phi=a \phi_{0} \operatorname{sech}\left[\sqrt{\frac{Q}{2 P}} \phi_{0} \tau\right]
$$

that resulted to give rise to a soliton for $a \in[0.5,1.5]$, that for values of an optical fiber corresponds to $P \in[0.4 \mathrm{~W}$, 3.6 W] thus demonstrating the exceptional stability of solitons to distrortions.

- Obtaining multisolitons is a more stringent test of validity for NLSE description: N is the largest integer such that $N \leq a+\frac{1}{2}$
- Temporal and spectral restoration of optical pulses is observed from a fiber with length equal to the soliton period at powers corresponding to integral multiples of the amplitude of the fundamental soliton [9].
- More solitons are in the solution, sharper is the pulse: from 7 ps input pulse to sub-ps output [10]
[8]

Fig. 1. Exact solutions for $u(x, t=0)=N \operatorname{sech} x$.

Experimental pulse shapes (autocorrelation) and spectra. [9]

Autocorrelation traces of pulses from a 320m long fiber. [10]

Bibliography

[1] Dauxois, T. and Peyrard, M., Physics of Solitons, (Cambridge University Press, 2006).
[2] Russell, J.S., Report on Waves, Report of the Fourteenth Meeting of the British Association for the Advancement of Science 25, 311-90 (1844).
[3] Korteweg, D.J., de Vries, G., On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves, Phylosophical Magazine 5th Series 36, 422-43 (1895).
[4] Zabusky, N.J., Kruskal, M.D., Interaction of solitons in a collisionless plasma and the recurrence of initial states, Physical Review Letters 15, 240-3 (1965).
[5] Hasegawa, A., Tappert, F., Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers: I. Anomalous dispersion. Applied Physics Letters 23.3, 142-144 (1973).
[6] Hasegawa, A., Tappert, F., Transmission of stationary nonlinear optical pulses in disperse dielectric fiber: II. Normal dispersion, Applied Physics Letters 23, 171-2 (1973).
[7] Mollenauer, L.F., Stolen, R.H., Islam, M.N., Experimental observation of a picosecond pulse narrowing and solitons in optical fibers, Physical Review Letters 45, 1095-8 (1980).
[8] Satsuma, J., Yajima, N., Initial Value Problems of One-Dimensional Self-Modulation of Nonlinear Waves in Dispersive Media, Progress of Theoretical Physics Supplement 55, 284-306 (1974).
[9] Stolen, R. H., Mollenauer, L. F., Tomlinson, W. J., Observation of pulse restoration at the soliton period in optical fibers, Optics letters 8.3, 186-188 (1983).
[10] Mollenauer, L. F., Stolen, R. H., Gordon, J. P., Tomlinson, W. J., Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers, Optics Letters 8.5, 289-291 (1983).

Thank you for the attention!

[^0]: Soliton solution

