Beyond-mean-field analysis of the 2D BCS-BEC crossover

Luca Salasnich

Dipartimento di Fisica e Astronomia “Galileo Galilei” and CNISM, Università di Padova
INO-CNR, Research Unit of Sesto Fiorentino, Consiglio Nazionale delle Ricerche

Odessa, August 18, 2017

Work done in collaboration with Giacomo Bighin (IST Austria)
Summary

- BCS-BEC crossover in 2D
- Zero-temperature results
- Finite-temperature results
- Conclusions
In 2004 the 3D BCS-BEC crossover has been observed with ultracold gases made of two-component fermionic ^{40}K or ^{6}Li alkali-metal atoms.¹

This crossover is obtained by using a Fano-Feshbach resonance to change the 3D s-wave scattering length a_s of the inter-atomic potential

$$a_s = a_{bg} \left(1 + \frac{\Delta_B}{B - B_0} \right),$$

where B is the external magnetic field.

¹C.A. Regal et al., PRL 92, 040403 (2004); M.W. Zwierlein et al., PRL 92, 120403 (2004); J. Kinast et al., PRL 92, 150402 (2004).
Recently also the 2D BEC-BEC crossover has been achieved experimentally\(^2\) with a Fermi gas of two-component \(^6\text{Li}\) atoms. In 2D attractive fermions \textit{always} form biatomic molecules with bound-state energy

\[
\epsilon_B \simeq \frac{\hbar^2}{ma_s^2},
\]

(2)

where \(a_s\) is the 2D s-wave scattering length, which is experimentally tuned by a Fano-Feshbach resonance. The fermionic single-particle spectrum is given by

\[
E_{sp}(k) = \sqrt{\left(\frac{\hbar^2 k^2}{2m} - \mu\right)^2 + \Delta^2},
\]

(3)

where \(\Delta\) is the energy gap and \(\mu\) is the chemical potential: \(\mu > 0\) corresponds to the BCS regime while \(\mu < 0\) corresponds to the BEC regime. Moreover, in the deep BEC regime \(\mu \to -\epsilon_B/2\).

To study the 2D BCS-BEC crossover we adopt the formalism of functional integration\(^3\). The partition function \(Z\) of the uniform system with fermionic fields \(\psi_s(r, \tau)\) at temperature \(T\), in a 2-dimensional volume \(L^2\), and with chemical potential \(\mu\) reads

\[
Z = \int \mathcal{D}[\psi_s, \bar{\psi}_s] \exp \left\{ -\frac{S}{\hbar} \right\}, \tag{4}
\]

where \((\beta \equiv 1/(k_B T)\) with \(k_B\) Boltzmann’s constant)

\[
S = \int_0^{\hbar \beta} d\tau \int_{L^2} d^2r \mathcal{L} \tag{5}
\]

is the Euclidean action functional with Lagrangian density

\[
\mathcal{L} = \bar{\psi}_s \left[\hbar \partial_\tau - \frac{\hbar^2}{2m} \nabla^2 - \mu \right] \psi_s + g \bar{\psi}_\uparrow \bar{\psi}_\downarrow \psi_\downarrow \psi_\uparrow \tag{6}
\]

where \(g\) is the attractive strength \((g < 0)\) of the s-wave coupling.

\(^3\)N. Nagaosa, Quantum Field Theory in Condensed Matter Physics (Springer, 1999)
Through the usual **Hubbard-Stratonovich transformation** the Lagrangian density \mathcal{L}, quartic in the fermionic fields, can be rewritten as a quadratic form by introducing the **auxiliary complex scalar field** $\Delta(\mathbf{r}, \tau)$. In this way the effective Euclidean Lagrangian density reads

$$
\mathcal{L}_e = \bar{\psi}_s \left[\hbar \partial_\tau - \frac{\hbar^2}{2m} \nabla^2 - \mu \right] \psi_s + \bar{\Delta} \psi_\downarrow \psi_\uparrow + \Delta \bar{\psi}_\uparrow \bar{\psi}_\downarrow - \frac{|\Delta|^2}{g} .
$$

(7)

We investigate the effect of fluctuations of the **pairing field** $\Delta(\mathbf{r}, t)$ around its mean-field value Δ_0 which may be taken to be real. For this reason we set

$$
\Delta(\mathbf{r}, \tau) = \Delta_0 + \eta(\mathbf{r}, \tau) ,
$$

(8)

where $\eta(\mathbf{r}, \tau)$ is the complex field which describes pairing fluctuations.
In particular, we are interested in the grand potential Ω, given by

$$\Omega = \frac{-1}{\beta} \ln (Z) \simeq \frac{-1}{\beta} \ln (Z_{mf} Z_g) = \Omega_{mf} + \Omega_g ,$$

(9)

where

$$Z_{mf} = \int D[\psi_s, \bar{\psi}_s] \exp \left\{ - \frac{S_e(\psi_s, \bar{\psi}_s, \Delta_0)}{\hbar} \right\}$$

(10)

is the mean-field partition function and

$$Z_g = \int D[\psi_s, \bar{\psi}_s] D[\eta, \bar{\eta}] \exp \left\{ - \frac{S_g(\psi_s, \bar{\psi}_s, \eta, \bar{\eta}, \Delta_0)}{\hbar} \right\}$$

(11)

is the partition function of Gaussian pairing fluctuations.
After functional integration over quadratic fields, one finds that the mean-field grand potential reads

$$\Omega_{mf} = -\frac{\Delta^2_0}{g} L^2 + \sum_k \left(\frac{\hbar^2 k^2}{2m} - \mu - E_{sp}(k) - \frac{2}{\beta} \ln \left(1 + e^{-\beta E_{sp}(k)} \right) \right) \tag{12}$$

where

$$E_{sp}(k) = \sqrt{\left(\frac{\hbar^2 k^2}{2m} - \mu \right)^2 + \Delta^2_0} \tag{13}$$

is the spectrum of fermionic single-particle excitations.

\(^4\)A. Altland and B. Simons, Condensed Matter Field Theory (Cambridge Univ. Press, 2006).
The Gaussian grand potential is instead given by

\[\Omega_g = \frac{1}{2\beta} \sum_Q \ln \det(M(Q)), \quad (14) \]

where \(M(Q) \) is the inverse propagator of Gaussian fluctuations of pairs and \(Q = (q, i\Omega_m) \) is the 4D wavevector with \(\Omega_m = 2\pi m/\beta \) the Matsubara frequencies and \(q \) the 3D wavevector.5

The sum over Matsubara frequencies is quite complicated and it does not give a simple expression. An approximate formula6 is

\[\Omega_g \approx \frac{1}{2} \sum_q E_{col}(q) + \frac{1}{\beta} \sum_q \ln (1 - e^{-\beta E_{col}(q)}), \quad (15) \]

where

\[E_{col}(q) = \hbar \omega(q) \quad (16) \]

is the spectrum of bosonic collective excitations with \(\omega(q) \) derived from

\[\det(M(q, \omega)) = 0. \quad (17) \]

The $M(Q)$ matrix is the inverse pair fluctuation propagator and describes the dynamics of the bosonic collective excitations of the theory, where

$$M_{11}(q, i\Omega_m) = -\frac{1}{g} + \sum_k \frac{\tanh(\beta E_{sp}(k)/2)}{2E_{sp}(k)} \times$$

$$\times \left[\frac{(i\Omega_m - E_{sp}(k) + \frac{\hbar^2(k+q)^2}{2m} - \mu)(E_{sp}(k) + \frac{\hbar^2k^2}{2m} - \mu)}{(i\Omega_m - E_{sp}(k) + E_{sp}(k + q))(i\Omega_m - E_{sp}(k) - E_{sp}(k + q))} \right]$$

$$- \frac{(i\Omega_m + E_{sp}(k) + \frac{\hbar^2(k+q)^2}{2m} - \mu)(E_{sp}(k) - \frac{\hbar^2k^2}{2m} + \mu)}{(i\Omega_m + E_{sp}(k) - E_{sp}(k + q))(i\Omega_m + E_{sp}(k) + E_{sp}(k + q))} \right] \right], \quad (18)$$

and

$$M_{12}(q, i\Omega_m) = -\Delta_0^2 \sum_k \frac{\tanh(\beta E_{sp}(k)/2)}{2E_{sp}(k)} \times$$

$$\times \left[\frac{1}{(i\Omega_m - E_{sp}(k) + E_{sp}(k + q))(i\Omega_m - E_{sp}(k) - E_{sp}(k + q))} \right]$$

$$+ \frac{1}{(i\Omega_m + E_{sp}(k) - E_{sp}(k + q))(i\Omega_m + E_{sp}(k) + E_{sp}(k + q))} \right]. \quad (19)$$
In our approach (Gaussian pair fluctuation theory\(^7\)), given the grand potential

\[\Omega(\mu, L^2, T, \Delta_0) = \Omega_{mf}(\mu, L^2, T, \Delta_0) + \Omega_g(\mu, L^2, T, \Delta_0) , \]

the energy gap \(\Delta_0\) is obtained from the (mean-field) gap equation

\[\frac{\partial \Omega_{mf}(\mu, L^2, T, \Delta_0)}{\partial \Delta_0} = 0 . \]

The number density \(n\) is instead obtained from the number equation

\[n = -\frac{1}{L^2} \frac{\partial \Omega(\mu, L^2, T, \Delta_0(\mu, T))}{\partial \mu} \]

taking into account the gap equation, i.e. that \(\Delta_0\) depends on \(\mu\) and \(T\): \(\Delta_0(\mu, T)\). Notice that the Nozieres and Schmitt-Rink approach\(^8\) is quite similar but in the number equation it forgets that \(\Delta_0\) depends on \(\mu\).

\(^7\)H. Hu, X-J. Liu, P.D. Drummond, EPL 74, 574 (2006).
\(^8\)P. Nozieres and S. Schmitt-Rink, JLTP 59, 195 (1985).
In the analysis of the two-dimensional attractive Fermi gas one must remember that, contrary to the 3D case, 2D realistic interatomic attractive potentials have always a bound state. In particular, the binding energy $\epsilon_B > 0$ of two fermions can be written in terms of the positive 2D fermionic scattering length a_s as

$$\epsilon_B = \frac{4}{e^{2\gamma}} \frac{\hbar^2}{ma_s^2},$$

where $\gamma = 0.577...$ is the Euler-Mascheroni constant. Moreover, the attractive (negative) interaction strength g of s-wave pairing is related to the binding energy $\epsilon_B > 0$ of a fermion pair in vacuum by the expression

$$-\frac{1}{g} = \frac{1}{2L^2} \sum_k \frac{1}{\frac{\hbar^2 k^2}{2m} + \frac{1}{2}\epsilon_B}.$$
In the **2D BCS-BEC crossover**, at zero temperature \((T = 0)\) the mean-field grand potential \(\Omega_{mf}\) can be written as\(^{11}\) \((\varepsilon_B > 0)\)

\[
\Omega_{mf} = -\frac{mL^2}{2\pi\hbar^2} \left(\mu + \frac{1}{2} \varepsilon_B\right)^2.
\] (25)

Using

\[
n = -\frac{1}{L^2} \frac{\partial \Omega_{mf}}{\partial \mu}
\] (26)

one immediately finds the chemical potential \(\mu\) as a function of the number density \(n = N/L^2\), i.e.

\[
\mu = \frac{\pi\hbar^2}{m} n - \frac{1}{2} \varepsilon_B.
\] (27)

In the BCS regime, where \(\varepsilon_B \ll \varepsilon_F\) with \(\varepsilon_F = \pi\hbar^2 n/m\), one finds \(\mu \simeq \varepsilon_F > 0\) while in the BEC regime, where \(\varepsilon_B \gg \varepsilon_F\) one has \(\mu \simeq -\varepsilon_B/2 < 0\).

\(^{11}\text{M. Randeria, J-M. Duan, and L-Y. Shieh, PRL 62, 981 (1989).}\)
At zero temperature, including Gaussian fluctuations

\[\Omega = -\frac{mL^2}{2\pi\hbar^2} (\mu + \frac{1}{2}\epsilon_B)^2 + \Omega_g(\mu, L^2, T = 0). \] (28)

The corresponding total pressure reads

\[P = - \frac{\Omega}{L^2} = \frac{m}{2\pi\hbar^2} (\mu + \frac{1}{2}\epsilon_B)^2 - \frac{1}{L^2} \Omega_g(\mu, L^2, T = 0). \] (29)

In the full 2D BCS-BEC crossover, from the regularized version of Eq. (14), we obtain numerically the zero-temperature pressure\(^\text{12}\) finding, as expected, the same results of He, Lu, Cao, Hu and Liu\(^\text{13}\).

\(^\text{12}\)G. Bighin and LS, PRB 93, 014519 (2016).
Scaled chemical potential μ/ϵ_F and scaled energy gap Δ_0/ϵ_F as a function of the scaled binding energy ϵ_B/ϵ_F. In the plot there are both mean-field results (MF) and mean-field plus Gaussian ones (G). G. Bighin and LS, J. Phys.: Conf. Ser. 691, 012018 (2016).
Scaled pressure P/P_{id} vs scaled binding energy ϵ_B/ϵ_F. Filled squares with error bars are experimental data of Makhalov et al. 14 Solid line is obtained with the regularized Gaussian theory15. Dashed line is the Popov equation of state of bosons with mass $m_B = 2m$. P_{id} is the pressure of the ideal 2D Fermi gas.

14V. Makhalov et al. PRL 112, 045301 (2014)
15L. He, H. Lu, G. Cao, H. Hu and X.-J. Liu, PRA 92, 023620 (2015)
In the deep BEC regime of the 2D BCS-BEC crossover, where the chemical potential μ becomes strongly negative, one finds

$$\Omega = \Omega_{mf} + \Omega_g \simeq \frac{m}{2\pi \hbar^2} (\mu + \frac{1}{2} \epsilon_B)^2 + \frac{1}{2} \sum_q E_{col}(q), \quad (30)$$

where

$$E_{col}(q) \simeq \sqrt{\frac{\hbar^2 q^2}{2m} \left(\lambda \frac{\hbar^2 q^2}{2m} + 2mc_s^2 \right)}, \quad (31)$$

with $\lambda = 1/4$ and $mc_s^2 = \mu + \epsilon_B/2$. The corresponding regularized pressure reads16

$$P = \frac{m}{64\pi \hbar^2} (\mu + \frac{1}{2} \epsilon_B)^2 \ln \left(\frac{\epsilon_B}{2(\mu + \frac{1}{2} \epsilon_B)} \right). \quad (32)$$

This is exactly the Popov equation of state of 2D Bose gas with chemical potential $\mu_B = 2(\mu + \epsilon_B/2)$ and mass $m_B = 2m$.

Finite-temperature results (I)

Following Laudau, we write the bare superfluid density as

\[n_s^{(\text{bare})}(T) = n - n_{n,sp}(T) - n_{n,col}(T) , \]

where

\[n_{n,sp}(T) = \beta \int \frac{d^2k}{(2\pi)^2} k^2 \frac{e^\beta E_{sp}(k)}{(e^\beta E_{sp}(k) + 1)^2} \]

is the normal density due to single-particle fermionic excitations, and

\[n_{n,col}(T) = \frac{\beta}{2} \int \frac{d^2q}{(2\pi)^2} q^2 \frac{e^\beta E_{col}(q)}{(e^\beta E_{col}(q) - 1)^2} \]

is the normal density due to collective bosonic excitations.\(^{18}\)

\(^{17}\)G. Bighin and LS, PRB 93, 014519 (2016).

\(^{18}\)To simplify the calculation of \(n_{n,sp}(T)\) and \(n_{n,col}(T)\) we use the approximation

\[E_{col}(q; \mu(T), \Delta_0(T)) \simeq E_{col}(q; \mu(0), \Delta_0(0)) \].
Finite-temperature results (II)

From the bare superfluid density $n_s^{(bare)}(T)$ and taking into account quantized vortices and anti-vortices we obtain a renormalized superfluid density $n_s(T)$, which jumps to zero at the Berezinskii-Kosterlitz-Thouless critical temperature T_{BKT}.

This is in contrast with the 3D case.

The effective low-energy Hamiltonian can be written as (see, for instance, N. Nagaosa, Quantum Field Theory in Condensed Matter Physics (Springer, 1999))

\[H = \frac{J^{(\text{bare})}(T)}{2} \int d^2r (\nabla \theta(r))^2 , \]

(36)

where \(\theta(r) \) is the phase angle of the pairing field \(\Delta(r) = |\Delta(r)|e^{i\theta(r)} \) and \(J^{(\text{bare})}(T) = \frac{\hbar^2}{4m} n_s^{(\text{bare})}(T) \)

(37)

is the bare phase stiffness. One can rewrite the phase angle as follows

\[\theta(r) = \theta_0(r) + \theta_v(r) , \]

(38)

where \(\theta_0(r) \) has zero circulation (no vortices) while \(\theta_v(r) \) encodes the contribution of quantized vortices and anti-vortices, and

\[H = \frac{J(T)}{2} \int d^2r (\nabla \theta_0(r))^2 , \]

(39)

where \(J(T) \) is the renormalized phase stiffness.
Finite-temperature results (IV)

The renormalized phase stiffness $J(T)$ is obtained from the bare one $J^{(\text{bare})}(T)$ by solving the Kosterlitz renormalization group equations\(^{20}\).

\begin{align}
\frac{d}{d\ell} K(\ell) &= -4\pi^3 K(\ell)^2 y(\ell)^2 \quad (40) \\
\frac{d}{d\ell} y(\ell) &= (2 - \pi K(\ell)) y(\ell) \quad (41)
\end{align}

for the running variables $K(\ell)$ and $y(\ell)$, as a function of the adimensional scale ℓ subjected to the initial conditions $K(\ell = 0) = k_B T J^{(\text{bare})}(T)$ and $y(\ell = 0) = \exp(-\mu_c/(k_B T))$, with $\mu_c = \pi^2 J^{(\text{bare})}(T)/4$ the vortex energy\(^{21}\).

The renormalized phase stiffness is then

\[J(T) = \frac{K(\ell = +\infty)}{k_B T}, \quad (42) \]

and the corresponding renormalized superfluid density reads

\[n_s(T) = \frac{4m}{\hbar^2} J(T). \quad (43) \]

Superfluid fraction n_s/n vs scaled temperature T/T_F for three different values of the adimensional binding energy ϵ_B/ϵ_F, ranging from the BCS to the BEC regime. Solid lines: renormalized superfluid density. Dashed lines: bare superfluid density. $T_F = \epsilon_F/k_B$ is the Fermi temperature. G. Bighin and LS, Sci. Rep. 7, 45702 (2017).
Finite-temperature results (VI)

Theoretical predictions22 for the Berezinskii-Kosterlitz-Thouless critical temperature T_{BKT} (at which $n_s(T) = 0$) compared to recent experimental observation23 (circles with error bars). The underestimation of experimental data can be due to:

- absence of harmonic trap in the theory,
- 3D effects in the experiment.

23P.A. Murthy et al., PRL \textbf{115}, 010401 (2015).
Conclusions

- After regularization\(^{24}\) beyond-mean-field Gaussian fluctuations give remarkable effects for superfluid fermions in the 2D BCS-BEC crossover at zero temperature:
 - logarithmic behavior of the equation of state in the deep BEC regime
 - good agreement with (quasi) zero-temperature experimental data
- Also at finite temperature beyond-mean-field effects, with the inclusion of quantized vortices and antivortices, become relevant in the strong-coupling regime of 2D BCS-BEC crossover:
 - bare \(n_s^{(bare)}(T)\) and renormalized \(n_s(T)\) superfluid density
 - Berezinskii-Kosterlitz-Thouless critical temperature \(T_{BKT}\)

Thank you for your attention!

Main sponsor: University of Padova (BIRD Project “Superfluid properties of Fermi gases in optical potentials”).