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INO-CNR, Research Unit of Sesto Fiorentino, Consiglio Nazionale delle Ricerche

Ischia, June 26, 2016

Work done in collaboration with
Giacomo Bighin and Flavio Toigo



Summary

BCS-BEC crossover in 2D

Quantum fluctuations in 2D

New results for 2D BCS-BEC crossover

Conclusions



BCS-BEC crossover in 2D (I)

In 2004 the 3D BCS-BEC crossover has been observed with ultracold

gases made of two-component fermionic 40K or 6Li alkali-metal

atoms.1
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This crossover is obtained by using a Fano-Feshbach resonance to change
the 3D s-wave scattering length as of the inter-atomic potential

as = abg

(

1 +
∆B

B − B0

)

, (1)

where B is the external magnetic field.

1C.A. Regal et al., PRL 92, 040403 (2004); M.W. Zwierlein et al., PRL 92, 120403
(2004); J. Kinast et al., PRL 92, 150402 (2004).



BCS-BEC crossover in 2D (II)

Recently also the 2D BEC-BEC crossover has been achieved
experimentally2 with a Fermi gas of two-component 6Li atoms. In 2D
attractive fermions always form biatomic molecules with bound-state
energy

ǫB ≃
~

2

mas
2
, (2)

where as is the 2D s-wave scattering length, which is experimentally
tuned by a Fano-Feshbach resonance.
The fermionic single-particle spectrum is given by

Esp(k) =

√

(

~2k2

2m
− µ

)2

+ ∆2 , (3)

where ∆ is the energy gap and µ is the chemical potential: µ > 0
corresponds to the BCS regime while µ < 0 corresponds to the BEC
regime. Moroever, in the deep BEC regime µ→ −ǫB/2.

2V. Makhalov et al. PRL 112, 045301 (2014); M.G. Ries et al., PRL 114, 230401
(2015); I. Boettcher et al., PRL 116, 045303 (2016).



BCS-BEC crossover in 2D (III)

To study the 2D BCS-BEC crossover we adopt the formalism of
functional integration3. The partition function Z of the uniform system
with fermionic fields ψs(r, τ) at temperature T , in a D-dimensional
volume LD , and with chemical potential µ reads

Z =

∫

D[ψs , ψ̄s ] exp

{

−
S

~

}

, (4)

where (β ≡ 1/(kBT ) with kB Boltzmann’s constant)

S =

∫

~β

0

dτ

∫

LD

dDr L (5)

is the Euclidean action functional with Lagrangian density

L = ψ̄s

[

~∂τ −
~

2

2m
∇2 − µ

]

ψs + g ψ̄↑ ψ̄↓ ψ↓ ψ↑ (6)

where g is the attractive strength (g < 0) of the s-wave coupling.
3N. Nagaosa, Quantum Field Theory in Condensed Matter Physics (Springer, 1999)



BCS-BEC crossover in 2D (IV)

Through the usual Hubbard-Stratonovich transformation the Lagrangian
density L, quartic in the fermionic fields, can be rewritten as a quadratic
form by introducing the auxiliary complex scalar field ∆(r, τ). In this way
the effective Euclidean Lagrangian density reads

Le = ψ̄s

[

~∂τ −
~

2

2m
∇2 − µ

]

ψs + ∆̄ψ↓ ψ↑ + ∆ψ̄↑ ψ̄↓ −
|∆|2

g
. (7)

We investigate the effect of fluctuations of the gap field ∆(r, t) around
its mean-field value ∆0 which may be taken to be real. For this reason
we set

∆(r, τ) = ∆0 + η(r, τ) , (8)

where η(r, τ) is the complex field which describes pairing fluctuations.



BCS-BEC crossover in 2D (V)

In particular, we are interested in the grand potential Ω, given by

Ω = −
1

β
ln (Z) ≃ −

1

β
ln (Zmf Zg ) = Ωmf + ΩB , (9)

where

Zmf =

∫

D[ψs , ψ̄s ] exp

{

−
Se(ψs , ψ̄s ,∆0)

~

}

(10)

is the mean-field partition function and

Zg =

∫

D[ψs , ψ̄s ]D[η, η̄] exp

{

−
Sg (ψs , ψ̄s , η, η̄,∆0)

~

}

(11)

is the partition function of Gaussian pairing fluctuations.



Quantum fluctuations in 2D (I)

One finds that in the gas of paired fermions there are two kinds of
elementary excitations: fermionic single-particle excitations with energy

Esp(k) =

√

(

~2k2

2m
− µ

)2

+ ∆2
0 , (12)

where ∆0 is the pairing gap, and bosonic collective excitations with
energy

Ecol(q) =

√

~2q2

2m

(

λ
~2q2

2m
+ 2 m c2

s

)

, (13)

where λ is the first correction to the familiar low-momentum phonon
dispersion Ecol(q) ≃ cs~q and cs is the sound velocity. Notice that both
λ and cs depend on the chemical potential µ.



Quantum fluctuations in 2D (II)

Moreover, at the Gaussian level, the total grand potential reads

Ω = Ωmf + Ωg , (14)

where
Ωmf = Ω0 + Ω

(0)
F + Ω

(T )
F (15)

is the mean-field grand potential with

Ω0 = −
∆2

0

g
LD (16)

the grand potential of the order parameter ∆0,

Ω
(0)
F = −

∑

k

(

Esp(k) −
~

2k2

2m
+ µ

)

(17)

the zero-point energy of fermionic single-particle excitations,

Ω
(T )
F =

2

β

∑

k

ln (1 + e−β Esp(k)) (18)

the finite-temperature grand potential of the fermionic single-particle
excitations.



Quantum fluctuations in 2D (III)

The grand-potential of bosonic Gaussian fluctuations reads

Ωg = Ω
(0)
g ,B + Ω

(T )
g ,B , (19)

where

Ω
(0)
g ,B =

1

2

∑

q

Ecol(q) (20)

is the zero-point energy of bosonic collective excitations and

Ω
(T )
g ,B =

1

β

∑

q

ln (1 − e−β Ecol (q)) (21)

is the finite-temperature grand potential of the bosonic collective
excitations.
Both Ω

(0)
F and Ω

(0)
g ,B are ultraviolet divergent in any dimension D

(D = 1, 2, 3) and the regularization of these divergent terms is
complicated by the fact that one also must take into account the
BCS-BEC crossover.



New results for 2D BCS-BEC crossover (I)

In the analysis of the two-dimensional attractive Fermi gas one must
remember that, contrary to the 3D case, 2D realistic interatomic
attractive potentials have always a bound state. In particular4, the
binding energy ǫB > 0 of two fermions can be written in terms of the
positive 2D fermionic scattering length as as

ǫB =
4

e2γ

~
2

mas
2
, (22)

where γ = 0.577... is the Euler-Mascheroni constant. Moreover, the
attractive (negative) interaction strength g of s-wave pairing is related to
the binding energy ǫB > 0 of a fermion pair in vacuum by the expression5

−
1

g
=

1

2L2

∑

k

1
~2k2

2m
+ 1

2 ǫB
. (23)

4C. Mora and Y. Castin, 2003, PRA 67, 053615.
5M. Randeria, J-M. Duan, and L-Y. Shieh, PRL 62, 981 (1989).



New results for 2D BCS-BEC crossover (II)

In the 2D BCS-BEC crossover, at zero temperature (T = 0) the
mean-field grand potential Ωmf can be written as6 (ǫB > 0)

Ωmf = −
mL2

2π~2
(µ+

1

2
ǫB)2 . (24)

Using

n = −
1

L2

∂Ωmf

∂µ
(25)

one immediately finds the chemical potential µ as a function of the
number density n = N/L2, i.e.

µ =
π~

2

m
n −

1

2
ǫB . (26)

In the BCS regime, where ǫB ≪ ǫF with ǫF = π~
2n/m, one finds

µ ≃ ǫF > 0 while in the BEC regime, where ǫB ≫ ǫF one has
µ ≃ −ǫB/2 < 0.

6M. Randeria, J-M. Duan, and L-Y. Shieh, PRL 62, 981 (1989).



New results for 2D BCS-BEC crossover (III)

In the deep BEC regime of the 2D BCS-BEC crossover, where the
chemical potential µ becomes negative, performing regularization of
zero-point fluctuations we have recently found7 that the
zero-temperature grand potential (including bosonic excitations) is

Ω = −
mL2

64π~2
(µ+

1

2
ǫB)2 ln

(

ǫB

2(µ+ 1
2 ǫB)

)

. (27)

This is exactly Popov’s equation of state of 2D Bose gas with chemical
potential µB = 2(µ+ ǫB/2) and mass mB = 2m. In this way we have
identified the two-dimensional scattering length aB of composite bosons
as

aB = 1
21/2e1/4 as . (28)

The value aB/as = 1/(21/2e1/4) ≃ 0.551 is in full agreement with
aB/as = 0.55(4) obtained by Monte Carlo calculations8.

7LS and F. Toigo, PRA 91, 011604(R) (2015).
8G. Bertaina and S. Giorgini, PRL 106, 110403 (2011).



New results for 2D BCS-BEC crossover (IV)

At zero temperature we compare9 the first sound velocity

cs =

√

n

m

∂µ

∂n
=

√

−
n

m

(

1

L2

∂2Ω(µ)

∂µ2

)−1

. (29)

with available experimental data10 (blue circles and red squares).

9G. Bighin and LS, PRB 93, 014519 (2016).
10N. Luick, M.Sc. Thesis, Supervisors: E. Moritz and L. Mathey, University of

Hamburg (2014).



New results for 2D BCS-BEC crossover (V)

The Berezinskii-Kosterlitz-Thouless critical temperature TBKT is
determined by the jump of the renormalized superfluid density ns,r (T ),
derived11 starting from the bare superfluid density

ns(T ) = n− β

∫

d
2k

(2π)2
k2 eβEsp(k)

(eβEsp(k) + 1)2
−
β

2

∫

d
2q

(2π)2
q2 eβEcol (q)

(eβEcol (q) − 1)2

(30)

and using Kosterlitz’s renormalization-group equations.12

11G. Bighin and LS, in preparation.
12J.M. Kosterlitz and D.J. Thouless, J. Phys. C 6, 1181 (1973).



New results for 2D BCS-BEC crossover (VI)

In fact the low-energy Hamiltonian of a fermionic superfluid can be
recast13 as that of an effective continuous 2D XY model

H =
J(T )

2

∫

d2r (∇θ(r))
2
, (31)

where θ(r) is the phase angle of the pairing field ∆(r) = |∆(r)|e iθ(r) and

J(T ) =
~

2

4m
ns(T ) (32)

is the phase stiffness. The compactness of the phase angle θ(r) implies
that

∮

∇θ(r) · dr = 2πq , (33)

where q is the integer number associated to quantum vortices (q > 0)
and antivortices (q < 0), which renormalize14 the phase stiffness and
consequently also the superfluid density.

13E. Babaev and H. Kleinert, Phys. Rev. B 59, 12083 (1999).
14J.M. Kosterlitz and D.J. Thouless, J. Phys. C 6, 1181 (1973).



New results for 2D BCS-BEC crossover (VII)

Theoretical predictions for the Berezinskii-Kosterlitz-Thouless critical
temperature TBKT (at which vortex-antivortex pairs unbind) compared15

to recent experimental observation16 (circles with error bars).

15G. Bighin and LS, PRB 93, 014519 (2016); G. Bighin and LS, in preparation.
16P.A. Murthy et al., PRL 115, 010401 (2015).



Conclusions

The regularization of zero-point energy17 gives remarkable
beyond-mean-field effects for composite bosons in the 2D BCS-BEC
crossover at zero temperature:
– logarithmic behavior of the equation of state
– Bose-Bose scattering length aB vs Fermi-Fermi scattering length as

– speed of first sound (and also second sound)

Also at finite temperature beyond-mean-field effects, with the
inclusion of quantized vortices and antivortices, become relevant in
the strong-coupling regime of 2D BCS-BEC crossover:
– superfluid density ns

– critical temperature TBKT

17For a very recent comprehensive review see:
L. Salasnich and F. Toigo, Zero-Point Energy of Ultracold Atoms,

arXiv: 1606.03699, Physics Reports, in press.



Acknowledgements

Thank you for your attention!

Main sponsors: PRIN-MIUR, UNIPD.


