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BCS-BEC crossover in 2D (1)

In 2004 the 3D BCS-BEC crossover has been observed with ultracold

gases made of two-component fermionic “°K or °Li alkali-metal
1

atoms.
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This crossover is obtained by using a Fano-Feshbach resonance to change
the 3D s-wave scattering length a5 of the inter-atomic potential

A
ds = abg <1 + B—iBBO) ) (1)

where B is the external magnetic field.

LC.A. Regal et al., PRL 92, 040403 (2004); M.W. Zwierlein et al., PRL 92, 120403
(2004); J. Kinast et al., PRL 92, 150402 (2004).



BCS-BEC crossover in 2D (l1)

Recently also the 2D BEC-BEC crossover has been achieved
experimentally? with a Fermi gas of two-component °Li atoms. In 2D
attractive fermions always form biatomic molecules with bound-state

energy
h2
B~ —— 2
€B ma.2 ) ( )

where as is the 2D s-wave scattering length, which is experimentally
tuned by a Fano-Feshbach resonance.
The fermionic single-particle spectrum is given by

Ep(k) = \/<% - u>2 + A2, (3)

where A is the energy gap and p is the chemical potential: p >0
corresponds to the BCS regime while . < 0 corresponds to the BEC
regime. Moroever, in the deep BEC regime y — —ep/2.

2V. Makhalov et al. PRL 112, 045301 (2014); M.G. Ries et al., PRL 114, 230401
(2015); 1. Boettcher et al., PRL 116, 045303 (2016).



BCS-BEC crossover in 2D (111)

To study the 2D BCS-BEC crossover we adopt the formalism of
functional integration3. The partition function Z of the uniform system
with fermionic fields 1s(r, 7) at temperature T, in a D-dimensional
volume LP, and with chemical potential j reads

z:/D[ws,i/?s] exp{—%}, (4)

where (8 = 1/(kgT) with kg Boltzmann's constant)

h3
5:/ dT/ dPr L (5)
0 Lb

is the Euclidean action functional with Lagrangian density

h2
L =1 {ﬁa ——V2—M] Vs + g1 Uy Yy g (6)

where g is the attractive strength (g < 0) of the s-wave coupling.
3N. Nagaosa, Quantum Field Theory in Condensed Matter Physics (Springer, 1999)




BCS-BEC crossover in 2D (1V)

Through the usual Hubbard-Stratonovich transformation the Lagrangian

density £, quartic in the fermionic fields, can be rewritten as a quadratic
form by introducing the auxiliary complex scalar field A(r, 7). In this way
the effective Euclidean Lagrangian density reads

- 2
Le=1s |hO; ——V2—M ¢5+AM¢T+N/}TM—%~ (7)

We investigate the effect of fluctuations of the gap field A(r, t) around
its mean-field value Ag which may be taken to be real. For this reason
we set

A(rv T) = Ao + n(rv T) ) (8)

where n(r, 7) is the complex field which describes pairing fluctuations.



BCS-BEC crossover in 2D (V)

In particular, we are interested in the grand potential 2, given by
1 1
Q:—B|n(Z)E—Bm(szzg):fsz—l—ﬁg R (9)

where

Zmf = /D[wsﬂ[_}s] eXP{—M}

is the mean-field partition function and

(10)

2 = [ Dlve Dl o {-2ellnten BB ] )

is the partition function of Gaussian pairing fluctuations.



Quantum fluctuations in 2D (1)

One finds that in the gas of paired fermions there are two kinds of
elementary excitations: fermionic single-particle excitations with energy

Ep(k) = \/<¥ —u)2+A3, (12)

where A is the pairing gap, and bosonic collective excitations with

energy
h2q? h2q?
Eco/(q) = \/ (/\ —~—+2m C2> ) (13)

2m

where ) is the first correction to the familiar low-momentum phonon
dispersion E.(q) = cshq and ¢ is the sound velocity. Notice that both
A and ¢; depend on the chemical potential .



Quantum fluctuations in 2D (I1)

Moreover, at the Gaussian level, the total grand potential reads

Q=Qumn +Q, (14)
where
Q= Qo + Q) + Q7 (15)
is the mean-field grand potential with
A2
Qo=—-—21P (16)
g
the grand potential of the order parameter Ay,
0 h2k?
AP =~ (Bl ~ gy + (17)

the zero-point energy of fermionic single-particle excitations,
2 _
olh — BZIn(l—i—e P Ew(k)y (18)
k

the finite-temperature grand potential of the fermionic single-particle
excitations.



Quantum fluctuations in 2D (111)

The grand-potential of bosonic Gaussian fluctuations reads

0 T
Q= Q5+ Q3 (19)
where 1
0
Q(g,)B = 5 Z Eco/(q) (20)
q

is the zero-point energy of bosonic collective excitations and
o) = Z'" (1 — e P Eala)y (21)

is the finite-temperature grand potential of the bosonic collective
excitations.

Both Q(,,P) and Qgg are ultraviolet divergent in any dimension D
(D =1,2,3) and the regularization of these divergent terms is
complicated by the fact that one also must take into account the
BCS-BEC crossover.



New results for 2D BCS-BEC crossover (1)

In the analysis of the two-dimensional attractive Fermi gas one must
remember that, contrary to the 3D case, 2D realistic interatomic
attractive potentials have always a bound state. In particular®, the
binding energy ¢z > 0 of two fermions can be written in terms of the
positive 2D fermionic scattering length a; as

4 n
e = eT'YW s (22)
where v = 0.577... is the Euler-Mascheroni constant. Moreover, the
attractive (negative) interaction strength g of s-wave pairing is related to
the binding energy ¢z > 0 of a fermion pair in vacuum by the expression®

1

1 1
= —_—. 23
g 2L Zk: 522'/:72 +%€B )

4C. Mora and Y. Castin, 2003, PRA 67, 053615.
5M. Randeria, J-M. Duan, and L-Y. Shieh, PRL 62, 981 (1989).



New results for 2D BCS-BEC crossover (1)

In the 2D BCS-BEC crossover, at zero temperature (T = 0) the
mean-field grand potential Qs can be written as® (¢g > 0)

mlL? 1
Using 90
1 mf
- 2

one immediately finds the chemical potential i as a function of the
number density n = N/L?, i.e.
Th? 1
=—0n——cp. 26

p=——n—ccs (26)
In the BCS regime, where e < ef with e = ﬂ'hzn/m, one finds
u =~ ep > 0 while in the BEC regime, where eg > € one has
p~—eg/2<0.

6M. Randeria, J-M. Duan, and L-Y. Shieh, PRL 62, 981 (1989).



New results for 2D BCS-BEC crossover (l11)

In the deep BEC regime of the 2D BCS-BEC crossover, where the
chemical potential p becomes negative, performing regularization of
zero-point fluctuations we have recently found” that the
zero-temperature grand potential (including bosonic excitations) is

mL2 1 €EB
Q= 2 —L ). 27
“earE T e In (2(u+%63)> 27)

This is exactly Popov's equation of state of 2D Bose gas with chemical
potential ug = 2(1x + €5/2) and mass mg = 2m. In this way we have
identified the two-dimensional scattering length ag of composite bosons
as

ap = 21/2181/4 as - (28)

The value ag/a; = 1/(21/2e'/%) ~ 0.551 is in full agreement with
ag/as = 0.55(4) obtained by Monte Carlo calculations®.

LS and F. Toigo, PRA 91, 011604(R) (2015).
8G. Bertaina and S. Giorgini, PRL 106, 110403 (2011).



New results for 2D BCS-BEC crossover (1V)

At zero temperature we compare® the first sound velocity
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with available experimental datal® (blue circles and red squares).

9G. Bighin and LS, PRB 93, 014519 (2016).
10N, Luick, M.Sc. Thesis, Supervisors: E. Moritz and L. Mathey, University of
Hamburg (2014).



New results for 2D BCS-BEC crossover (V)

The Berezinskii-Kosterlitz-Thouless critical temperature TgkT is
determined by the jump of the renormalized superfluid density ns (T),
derived!! starting from the bare superfluid density

d2k eBEsp(k) 5 7 eBEeoi(q)
=n-— ﬁ/ eﬁEsP(k / e,BEm/(q) — 1)2

(30)

— log(=) = -7

£ay _
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and using Kosterlitz’s renormalization-group equations.'?

11G. Bighin and LS, in preparation.
12).M. Kosterlitz and D.J. Thouless, J. Phys. C 6, 1181 (1973).




New results for 2D BCS-BEC crossover (V1)

In fact the low-energy Hamiltonian of a fermionic superfluid can be
recast!? as that of an effective continuous 2D XY model

T

H = ?/d%(vo(r)f , (31)

where 6(r) is the phase angle of the pairing field A(r) = |A(r)|e”") and
h2

A7) = 2 n(7) (22)

is the phase stiffness. The compactness of the phase angle 0(r) implies
that

%V@(r) -dr =2nq, (33)

where g is the integer number associated to quantum vortices (g > 0)
and antivortices (g < 0), which renormalize!* the phase stiffness and
consequently also the superfluid density.

13E. Babaev and H. Kleinert, Phys. Rev. B 59, 12083 (1999).
14).M. Kosterlitz and D.J. Thouless, J. Phys. C 6, 1181 (1973).




New results for 2D BCS-BEC crossover (VII)

0.20
Gaussian EOS + RG
----- MF EOS + RG
0.15
gl w
o o
= ‘ 0.10 ] l l
2 1
0.05 /
0005 5 o 5 10 15

log(epler)
Theoretical predictions for the Berezinskii-Kosterlitz-Thouless critical
temperature Tpkt (at which vortex-antivortex pairs unbind) compared!®
to recent experimental observation®® (circles with error bars).

15G. Bighin and LS, PRB 93, 014519 (2016); G. Bighin and LS, in preparation.
6P A. Murthy et al., PRL 115, 010401 (2015).



Conclusions

@ The regularization of zero-point energy!” gives remarkable
beyond-mean-field effects for composite bosons in the 2D BCS-BEC
crossover at zero temperature:

— logarithmic behavior of the equation of state
— Bose-Bose scattering length ag vs Fermi-Fermi scattering length as
— speed of first sound (and also second sound)

@ Also at finite temperature beyond-mean-field effects, with the
inclusion of quantized vortices and antivortices, become relevant in
the strong-coupling regime of 2D BCS-BEC crossover:

— superfluid density ns
— critical temperature TgkT

For a very recent comprehensive review see:
L. Salasnich and F. Toigo, Zero-Point Energy of Ultracold Atoms,
arXiv: 1606.03699, Physics Reports, in press.
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