Composite bosons in the 2D BCS-BEC crossover

Luca Salasnich

Dipartimento di Fisica e Astronomia “Galileo Galilei” and CNISM, Università di Padova

Ischia, June 16, 2015

Collaboration with Flavio Toigo (Univ. of Padova)
Summary

- BCS-BEC crossover with ultracold atoms
- Theory for a D-dimensional Fermi superfluid
- Results for the two-dimensional Fermi superfluid
- Conclusions
In 2004 the 3D BCS-BEC crossover has been observed with ultracold gases made of fermionic ^{40}K and ^6Li alkali-metal atoms.\(^1\)

This crossover is obtained by changing (with a Feshbach resonance) the s-wave scattering length \(a_F\) of the inter-atomic potential:
- \(a_F \to 0^-\) (BCS regime of weakly-interacting Cooper pairs)
- \(a_F \to \pm \infty\) (unitarity limit of strongly-interacting Cooper pairs)
- \(a_F \to 0^+\) (BEC regime of bosonic dimers)

\(^1\)C.A. Regal et al., PRL 92, 040403 (2004); M.W. Zwierlein et al., PRL 92, 120403 (2004); M. Bartenstein et al., PRL 92, 120401 (2004); J. Kinast et al., PRL 92, 150402 (2004).
BCS-BEC crossover with ultracold atoms (II)

The crossover from a BCS superfluid ($a_F < 0$) to a BEC of molecular pairs ($a_F > 0$) has been investigated experimentally around a Feshbach resonance, where the s-wave scattering length a diverges, and it has been shown that the system is (meta)stable. The detection of quantized vortices under rotation2 has clarified that this dilute gas of ultracold atoms is superfluid. Usually the BCS-BEC crossover is analyzed in terms of

$$y = \frac{1}{k_F a_F}$$ (1)

the inverse scaled interaction strength, where $k_F = (3\pi^2 n)^{1/3}$ is the Fermi wave number and n the total density. The system is dilute because $r_e k_F \ll 1$, with r_e the effective range of the inter-atomic potential.

In 2014 also the 2D BCS-BEC crossover has been achieved\(^3\) with a quasi-2D Fermi gas of \(^6\)Li atoms with widely tunable s-wave interaction, measuring the pressure \(P\) vs the gas parameter \(a_B n_B^{1/2}\), with \(a_B = a_F / (2^{1/2} e^{1/4})\) and \(n_B = n/2\).

Filled circles with error bars are experimental data while lines are obtained with our beyond-mean-field finite-temperature theory\(^4\).

\(^3\)V. Makhalov, K. Martiyanov, and A. Turlapov, PRL 112, 045301 (2014).

\(^4\)LS and Toigo, PRA 91, 011604(R) (2015); LS and F. Toigo, in preparation.
We adopt the path integral formalism\(^5\). The partition function \(Z\) of the uniform system with fermionic fields \(\psi_s(r, \tau)\) at temperature \(T\), in a \(D\)-dimensional volume \(L^D\), and with chemical potential \(\mu\) reads

\[
Z = \int \mathcal{D}[\psi_s, \bar{\psi}_s] \exp \left\{ -\frac{1}{\hbar} S \right\}, \tag{2}
\]

where \((\beta \equiv 1/(k_B T)\) with \(k_B\) Boltzmann’s constant) \(S = \int_0^{\hbar \beta} d\tau \int_{L^D} d^D r \mathcal{L}\) is the Euclidean action functional with Lagrangian density

\[
\mathcal{L} = \bar{\psi}_s \left[\hbar \partial_\tau - \frac{\hbar^2}{2m} \nabla^2 - \mu \right] \psi_s + g \bar{\psi}^\uparrow \bar{\psi}^\downarrow \psi^\downarrow \psi^\uparrow \tag{4}
\]

where \(g\) is the attractive strength \((g < 0)\) of the s-wave coupling.

\(^5\)N. Nagaosa, Quantum Field Theory in Condensed Matter Physics (Springer, 1999).
Theory for a D-dimensional Fermi superfluid (II)

Through the usual Hubbard-Stratonovich transformation the Lagrangian density \mathcal{L}, quartic in the fermionic fields, can be rewritten as a quadratic form by introducing the auxiliary complex scalar field $\Delta(r, \tau)$ so that:

$$
Z = \int \mathcal{D}[\psi_s, \bar{\psi}_s] \mathcal{D}[\Delta, \bar{\Delta}] \exp \left\{ - \frac{S_e(\psi_s, \bar{\psi}_s, \Delta, \bar{\Delta})}{\hbar} \right\},
$$

(5)

where

$$
S_e(\psi_s, \bar{\psi}_s, \Delta, \bar{\Delta}) = \int_0^{\hbar \beta} d\tau \int L^D \mathcal{D}[\psi_s, \bar{\psi}_s, \Delta, \bar{\Delta})
$$

(6)

and the (exact) effective Euclidean Lagrangian density $\mathcal{L}_e(\psi_s, \bar{\psi}_s, \Delta, \bar{\Delta})$ reads

$$
\mathcal{L}_e = \bar{\psi}_s \left[\hbar \partial_\tau - \frac{\hbar^2}{2m} \nabla^2 - \mu \right] \psi_s + \bar{\Delta} \psi_\downarrow \psi_\uparrow + \Delta \bar{\psi}_\uparrow \bar{\psi}_\downarrow - \frac{|\Delta|^2}{g}.
$$

(7)
We want to investigate the effect of fluctuations of the gap field $\Delta(\mathbf{r}, t)$ around its mean-field value Δ_0 which may be taken to be real. For this reason we set

$$\Delta(\mathbf{r}, \tau) = \Delta_0 + \eta(\mathbf{r}, \tau),$$

where $\eta(\mathbf{r}, \tau)$ is the complex field which describes pairing fluctuations. In particular, we are interested in the grand potential Ω, given by

$$\Omega = -\frac{1}{\beta} \ln (\mathcal{Z}) \simeq -\frac{1}{\beta} \ln (\mathcal{Z}_{mf} \mathcal{Z}_g) = \Omega_{mf} + \Omega_g,$$

where

$$\mathcal{Z}_{mf} = \int \mathcal{D}[\psi_s, \bar{\psi}_s] \exp \left\{ -\frac{S_e(\psi_s, \bar{\psi}_s, \Delta_0)}{\hbar} \right\}$$

is the mean-field partition function and

$$\mathcal{Z}_g = \int \mathcal{D}[\psi_s, \bar{\psi}_s] \mathcal{D}[\eta, \bar{\eta}] \exp \left\{ -\frac{S_g(\psi_s, \bar{\psi}_s, \eta, \bar{\eta}, \Delta_0)}{\hbar} \right\}$$

is the partition function of Gaussian pairing fluctuations.
To make a long story short, one finds that in the gas of paired fermions there are two kinds of elementary excitations: fermionic single-particle excitations with energy

\[E_{sp}(k) = \sqrt{\left(\frac{\hbar^2 k^2}{2m} - \mu\right)^2 + \Delta_0^2}, \]

(12)

where \(\Delta_0 \) is the pairing gap, and bosonic collective excitations with energy

\[E_{col}(q) = \sqrt{\frac{\hbar^2 q^2}{2m} \left(\lambda \frac{\hbar^2 q^2}{2m} + 2m c_s^2\right)}, \]

(13)

where \(\lambda \) is the first correction to the familiar low-momentum phonon dispersion \(E_{col}(q) \approx c_s \hbar q \) and \(c_s \) is the sound velocity. Notice that both \(\lambda \) and \(c_s \) depend on the chemical potential \(\mu \).
Moreover, at the Gaussian level, the total grand potential reads

$$\Omega = \Omega_{mf} + \Omega_g ,$$

(14)

where

$$\Omega_{mf} = - \frac{\Delta_0^2}{g} L^D + \Omega_F^{(0)} + \Omega_F^{(T)}$$

(15)

is the mean-field grand potential with

$$\Omega_F^{(0)} = - \sum_k \left(E_{sp}(k) - \frac{\hbar^2 k^2}{2m} + \mu \right)$$

(16)

the zero-point energy of fermionic single-particle excitations,

$$\Omega_F^{(T)} = \frac{2}{\beta} \sum_k \ln \left(1 + e^{-\beta E_{sp}(k)} \right)$$

(17)

the finite-temperature grand potential of the fermionic single-particle excitations.
The grand-potential of Gaussian fluctuations reads

$$\Omega_g = \Omega_g^{(0)} + \Omega_g^{(T)} ,$$ \hspace{1cm} (18)

where

$$\Omega_g^{(0)} = \frac{1}{2} \sum_q E_{\text{col}}(q)$$ \hspace{1cm} (19)

is the zero-point energy of bosonic collective excitations and

$$\Omega_g^{(T)} = \frac{1}{\beta} \sum_q \ln (1 - e^{-\beta E_{\text{col}}(q)})$$ \hspace{1cm} (20)

is the finite-temperature grand potential of the bosonic collective excitations.

Both $\Omega_F^{(0)}$ and $\Omega_g^{(0)}$ are ultraviolet divergent in any dimension D ($D = 1, 2, 3$) and the regularization of these divergent terms is complicated by the fact that one also must take into account the BCS-BEC crossover.
In the analysis of the **two-dimensional attractive Fermi gas** one must remember that, contrary to the 3D case, 2D realistic interatomic attractive potentials have always a bound state. In particular\(^6\), the binding energy \(\epsilon_b > 0\) of two fermions can be written in terms of the positive 2D fermionic scattering length \(a_F\) as

\[
\epsilon_b = \frac{4}{e^2\gamma} \frac{\hbar^2}{ma_F^2},
\]

where \(\gamma = 0.577...\) is the Euler-Mascheroni constant. Moreover, the attractive (negative) interaction strength \(g\) of s-wave pairing is related to the binding energy \(\epsilon_b > 0\) of a fermion pair in vacuum by the expression\(^7\)

\[
-\frac{1}{g} = \frac{1}{2L^2} \sum_k \frac{1}{\hbar^2k^2/2m + \frac{1}{2}\epsilon_b}.
\]

\(^7\)M. Randeria, J-M. Duan, and L-Y. Shieh, PRL 62, 981 (1989).
In the 2D BCS-BEC crossover, at zero temperature (\(T = 0 \)) the mean-field grand potential \(\Omega_{mf} \) can be written as\(^8\) (\(\epsilon_b > 0 \))

\[
\Omega_{mf} = -\frac{m L^2}{2 \pi \hbar^2} \left(\mu + \frac{1}{2} \epsilon_b \right)^2 .
\] (23)

Using

\[
n = -\frac{1}{L^2} \frac{\partial \Omega_{mf}}{\partial \mu}
\] (24)

one immediately finds the chemical potential \(\mu \) as a function of the number density \(n = N/L^2 \), i.e.

\[
\mu = \frac{\pi \hbar^2}{m} n - \frac{1}{2} \epsilon_b .
\] (25)

In the BCS regime, where \(\epsilon_b \ll \epsilon_F \) with \(\epsilon_F = \pi \hbar^2 n/m \), one finds \(\mu \simeq \epsilon_F > 0 \) while in the BEC regime, where \(\epsilon_b \gg \epsilon_F \) one has \(\mu \simeq -\epsilon_b/2 < 0 \).

\(^8\)M. Randeria, J-M. Duan, and L-Y. Shieh, PRL 62, 981 (1989).
Performing dimensional regularization of Gaussian fluctuations, we have recently found\(^9\) that the zero-temperature total grand potential is

\[
\Omega = \Omega_{mf} + \Omega_g = \frac{mL^2}{\pi\hbar^2} \left(\mu + \frac{1}{2}\epsilon_b\right)^2 \ln \left(\frac{\epsilon_b}{2(\mu + \frac{1}{2}\epsilon_b)}\right) . \tag{26}
\]

in the deep BEC regime.

Introducing \(\mu_B = 2(\mu + \epsilon_b/2)\) as the chemical potential of composite bosons with mass \(m_B = 2m\) and density \(n_B = n/2\), the zero-temperature total grand potential can be rewritten as

\[
\Omega = -\frac{m_B L^2}{8\pi\hbar^2} \mu_B^2 \ln \left(\frac{\epsilon_0}{\mu_B}\right) , \tag{27}
\]

that is exactly the Popov equation of state of 2D weakly-interacting bosons\(^{10}\)

provided that we identify the parameter

\[\epsilon_0 = \frac{4}{e^{2\gamma+1/2}} \frac{\hbar^2}{m_B a_B^2} \]

(28)

of the Popov theory of bosons (with scattering length \(a_B\))\(^{11}\) with the binding energy

\[\epsilon_b = \frac{4}{e^{2\gamma}} \frac{\hbar^2}{ma_F^2} \]

(29)

of paired fermions (with scattering length \(a_F\)).\(^{12}\) Thus, we find\(^{13}\)

\[a_B = \frac{1}{2^{1/2}e^{1/4}} a_F . \]

(30)

The value \(a_B/a_F = 1/(2^{1/2}e^{1/4}) \sim 0.551\) is in full agreement with that (\(a_B/a_F = 0.55(4)\)) obtained by Monte Carlo calculations\(^{14}\).

\(^{11}\)C. Mora and Y. Castin, PRL 102, 180404 (2009).
\(^{13}\)LS and F. Toigo, PRA 91, 011604(R) (2015).
At finite temperature \((T \neq 0)\) the pressure \(P\) is immediately obtained using the thermodynamic formula \(P = -\Omega/L^2\). Taking into account that the main thermal contribution is due to collective bosonic excitations we get\(^{15}\)

\[
P = \frac{m_B}{8\pi \hbar^2} \mu_B^2 \left[\ln \left(\frac{\epsilon_0}{\mu_B} \right) + 4\zeta(3) \left(\frac{k_B T}{\mu_B} \right)^3 \right],
\]

(31)

and also, by using \(n_B = \left(\frac{\partial \Omega}{\partial \mu_B} \right)_{T,L^2}\),

\[
n_B = \frac{m_B}{4\pi \hbar^2} \mu_B \left[\ln \left(\frac{\epsilon_0}{\mu_B e^{1/2}} \right) - 2\zeta(3) \left(\frac{k_B T}{\mu_B} \right)^3 \right]
\]

(32)

where \(\zeta(x)\) is the Riemann zeta function and \(\zeta(3) = 1.20205\). Eqs. (31) and (32) give, at fixed \(k_B T/\mu_B\), a parametric formula for the the pressure \(P\) as a function of the density \(n_B\) where \(\mu_B\) is the dummy parameter.

\(^{15}\)LS and F. Toigo, in preparation
Conclusions

- The D-dimensional superfluid Fermi gas in the BCS-BEC crossover has a divergent zero-point energy due to:
 - fermionic single-particle excitations (mean-field)
 - bosonic collective excitations (Gaussian fluctuations).
- **Regularization** of the divergent zero-point energy gives remarkable analytical results for composite bosons in two dimensions16:
 - reliable 2D equation of state (Popov);
 - analytical formula connecting a_B and a_F.
- Notice that also in three-dimensions one can regularize the divergent zero-point energy due to fermionic and bosonic excitations17
