Superfluid density, sound velocity and Goldstone mode in the 2D BCS-BEC crossover

Luca Salasnich

Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Italy

Padova, September 26, 2013

Collaboration with:
G. Bighin, L. Dell’Anna, P.A. Marchetti, G. Mazzarella, F. Toigo
(Università di Padova)
Summary

- Condensation and superfluidity in 2D systems
- 2D Fermi gas with pairing
- Mean-field
- Zero-temperature
- Finite-temperature
- Beyond mean-field
- Open problems
According to the **Mermin-Wagner theorem**\(^1\) in a 2D uniform system one can find **true condensation**, i.e. off-diagonal-long-range-order (ODLRO), only at zero temperature \((T = 0)\).

Nevertheless, as shown by Hohenberg\(^2\) the 2D uniform system can have **quasi condensation**, i.e. algebraic-long-range-order (ALRO), below a critical finite temperature. This critical temperature is usually identified with the Berezinskii-Kosterlitz-Thouless temperature\(^3\) below which the 2D system has a finite **superfluidity**.

We consider a **2D neutral Fermi gas with attractive s-wave interaction**. The **partition function** Z of the system at temperature T, in a region of area L^2, and with chemical potential μ can be written as

$$Z = \int \mathcal{D}[\psi_s, \bar{\psi}_s] \exp \left\{ -\frac{1}{\hbar} S \right\}, \quad (1)$$

where

$$S = \int_0^{\hbar\beta} d\tau \int_{L^2} d^2r \mathcal{L} \quad (2)$$

is the **Euclidean action functional** and \mathcal{L} is given by

$$\mathcal{L} = (\bar{\psi}_\uparrow, \bar{\psi}_\downarrow) \left[\hbar \partial_\tau - \frac{\hbar^2}{2m} \nabla^2 - \mu \right] \left(\begin{array}{c} \psi_\uparrow \\ \psi_\downarrow \end{array} \right) + g \bar{\psi}_\uparrow \bar{\psi}_\downarrow \psi_\downarrow \psi_\uparrow \quad (3)$$

with $g < 0$ is the attractive strength of the s-wave coupling. Notice that $\beta = 1/(k_B T)$ with k_B the Boltzmann constant.
The Lagrangian density \mathcal{L} is quartic in the fermionic fields ψ_s, but one can reduce the problem to a quadratic Lagrangian density by introducing an auxiliary complex scalar field $\Delta(r, \tau)$ via Hubbard-Stratonovich transformation\(^4\), which gives

$$\mathcal{Z} = \int \mathcal{D}[\psi_s, \bar{\psi}_s] \mathcal{D}[\Delta, \bar{\Delta}] \exp \left\{ -\frac{S_e}{\hbar} \right\}, \quad (4)$$

where

$$S_e = \int_0^{\hbar \beta} d\tau \int L^2 d^2r \mathcal{L}_e \quad (5)$$

and the (exact) effective Euclidean Lagrangian density \mathcal{L}_e reads

$$\mathcal{L}_e = (\bar{\psi}_\uparrow, \bar{\psi}_\downarrow) \left[\hbar \partial_\tau - \hbar^2 \frac{\nabla^2}{2m} - \mu \right] \begin{pmatrix} \psi_\uparrow \\ \psi_\downarrow \end{pmatrix} + \bar{\Delta} \psi_\downarrow \psi_\uparrow + \Delta \bar{\psi}_\uparrow \bar{\psi}_\downarrow - \frac{|\Delta|^2}{g}. \quad (6)$$

It is a standard procedure to integrate out the quadratic fermionic fields and to get a new effective action S_{eff} which depends only on the auxiliary field $\Delta(r, \tau)$. In this way we obtain

$$Z = \int \mathcal{D}[\Delta, \bar{\Delta}] \exp \left\{ -S_{\text{eff}} / \hbar \right\},$$

where

$$S_{\text{eff}} = - \text{Tr} [\ln (G^{-1})] - \int_0^{\hbar \beta} d\tau \int_{L^2} d^2 r \frac{|\Delta|^2}{g}$$

with

$$G^{-1} = \left(\begin{array}{cc} \hbar \partial_\tau - \frac{\hbar^2}{2m} \nabla^2 - \mu & \Delta \\ \Delta & \hbar \partial_\tau + \frac{\hbar^2}{2m} \nabla^2 + \mu \end{array} \right)$$

We stress that at this level the effective action S_{eff} is formally exact.
In the mean-field approximation one considers a constant and real gap parameter, i.e.
\[\Delta(r, \tau) = \Delta_0, \]
(10)

and the partition function becomes
\[Z_{mf} = \exp \left\{ -\frac{S_{mf}}{\hbar} \right\} = \exp \left\{ -\beta \Omega_{mf} \right\}, \]
(11)

where
\[\Omega_{mf} = -\sum_k \frac{1}{\beta} \left[2 \ln(2 \cosh(\beta E_k/2)) - \beta \xi_k \right] - L^2 \frac{\Delta_0^2}{g} \]
(12)

with \(\xi_k = \hbar^2 k^2/(2m) - \mu \) and
\[E_k = \sqrt{\xi_k^2 + \Delta_0^2}. \]
(13)
The constant and real gap parameter Δ_0 is obtained from

$$\frac{\partial \Omega_{mf}}{\partial \Delta_0} = 0,$$

which gives the gap equation

$$-\frac{1}{g} = \frac{1}{L^2} \sum_k \frac{\tanh(\beta E_k/2)}{2E_k}.$$ \hspace{1cm} (15)

The integral on the right side of this equation is divergent. However, in two dimensions quite generally a bound-state energy ϵ_B exists. For the contact potential the bound-state equation is

$$-\frac{1}{g} = \frac{1}{\Omega} \sum_k \frac{1}{2\hbar^2 k^2 + \epsilon_B}.$$ \hspace{1cm} (16)
In this way one obtains the regularized gap equation5

\[\sum_{k} \left(\frac{\tanh (\beta E_k/2)}{\hbar^2 k^2/2m + \epsilon_B/2} - \frac{1}{E_k} \right) = 0, \quad (17) \]

which can be used to study the BCS-BEC crossover by varying the binding energy ϵ_B.

We observe that the binding energy ϵ_B can be written as $\epsilon_B \simeq \hbar^2/(ma_{2D})$, where a_{2D} is the 2D s-wave scattering length, such that $a_{2D} \simeq a_z \exp(-a_z/a_{3D})$ with a_{3D} the 3D scattering length and a_z the characteristic length of the transverse confinement.6

From the thermodynamic formula

\[N = - \left(\frac{\partial \Omega_{mf}}{\partial \mu} \right)_{L^2,T} \]

(18)

we obtain the equation for the total number of fermions

\[N = \sum_k \left(1 - \frac{\xi_k}{E_k} \tanh \left(\frac{\beta E_k}{2} \right) \right) . \]

(19)

Moreover, the equation for the \(T = 0 \) number of quasi-condensed fermionic atoms\(^7\) reads

\[N_0 = 2 \int d^2r \ d^2r' \ |\langle \psi_{\downarrow}(r) \ \psi_{\uparrow}(r') \rangle|^2 = \sum_k \frac{\Delta_0^2}{2E_k^2} \tanh \left(\frac{\beta E_k}{2} \right) . \]

(20)

Zero-temperature properties (I)

At $T = 0$ the grand potential is given by

$$\Omega_{mf} = -\frac{m}{4\pi\hbar^2}L^2 \left(\mu^2 + \mu \sqrt{\mu^2 + \Delta_0^2} \right), \quad (21)$$

where the chemical potential μ reads

$$\mu = \epsilon_F - \frac{1}{2}\epsilon_B, \quad (22)$$

with $\epsilon_F = \pi\hbar^2 n/m$ the 2D Fermi energy, and the gap parameter Δ_0 is instead

$$\Delta_0 = \sqrt{2\epsilon_F \epsilon_B}. \quad (23)$$

In addition, we find8 this nice formula for the condensate fraction

$$\frac{N_0}{N} = \frac{1}{2} \left\{ \frac{\pi}{2} + \arctan \left(\frac{\mu}{\Delta} \right) \right\} \left(\frac{\mu}{\Delta} + \sqrt{1 + \left(\frac{\mu}{\Delta} \right)^2} \right). \quad (24)$$

Zero-temperature properties (II)

Figure: Upper panel: chemical potential μ and energy gap Δ_0 as a function of the binding energy ϵ_B of pairs. Lower panel: Bose-condensate fraction N_0/N of fermionic atoms as a function of the binding energy ϵ_B of pairs.
Zero-temperature properties (III)

According to Landau9 the first sound velocity c_s is given by

$$m c_s^2 = \left(\frac{\partial P}{\partial n} \right)_{L^2, \bar{S}},$$

where P is the pressure and $\bar{S} = S/N$ is the entropy per particle of the superfluid. Moreover, at zero temperature it holds the following equality

$$\left(\frac{\partial P}{\partial n} \right)_{L^2, 0} = n \left(\frac{\partial \mu}{\partial n} \right)_{L^2}.$$

Using the 2D zero-temperature mean-field result

$$\mu = \epsilon_F - \frac{1}{2} \epsilon_B,$$

where $\epsilon_F = (\pi \hbar^2 / m)n = mv_F^2 / 2$, we finally obtain

$$c_s = \frac{v_F}{\sqrt{2}}.$$

9L.D. Landau, Journal of Physics USSR 5, 71 (1941).
One can explicitly calculate the temperature T^* at which $\Delta_0 = 0$. In particular, one obtains10 the following equations

\begin{equation}
\mu(T^*) = k_B T^* \ln \left(e^{\epsilon_F/(k_B T^*)} - 1 \right),
\end{equation}

\begin{equation}
\epsilon_B = k_B T^* \frac{\pi}{\gamma} \exp \left(- \int_0^{\mu(T^*)/(2k_B T^*)} \frac{\tanh(u)}{u} du \right),
\end{equation}

which determine T^* and $\mu(T^*)$ as a function of the binding energy ϵ_B, with $\gamma = 1.781$.

Figure: Critical temperature T^* (solid line), critical chemical potential $\mu(T^*)$ (dashed line), and zero-temperature chemical potential $\mu(0)$ as a function of the binding energy ϵ_B of pairs.
Let us now consider beyond mean-field effects. We have seen that the exact partition function can be written as

$$Z = \int \mathcal{D}[\Delta, \bar{\Delta}] \exp \left\{ -\frac{S_{\text{eff}}[\Delta, \bar{\Delta}]}{\hbar} \right\},$$

(31)

where $S_{\text{eff}}[\Delta, \bar{\Delta}]$ is the effective action, which is a functional of the complex bosonic auxiliary field $\Delta(r, \tau)$ of pairing. We impose that

$$\Delta(r, \tau) = (\Delta_0 + \sigma(r, \tau)) e^{i\theta(r, \tau)}.$$

(32)

The partition function can be then formally written as

$$Z = e^{-\beta \Omega_{mf}(\Delta_0)} \int \mathcal{D}[\sigma, \theta] \exp \left\{ -\frac{S_{bmf}[\sigma, \theta; \Delta_0]}{\hbar} \right\}.$$

(33)
Beyond mean-field (II)

Expanding $S_{bmf}[\sigma, \theta; \Delta_0]$ at the second order and functional-integrating over the amplitude field $\sigma(r, \tau)$ one obtains11

$$Z = e^{-\beta \Omega_{mf}(\Delta_0)} \int \mathcal{D}[\theta] \exp \left\{ -S[\theta; \Delta_0]/\hbar \right\}, \quad (34)$$

where

$$S[\theta; \Delta_0] = \int_0^{\hbar \beta} d\tau \int 2 \, d^2r \left\{ \frac{J}{2} (\nabla \theta)^2 + \frac{K}{2} (\partial_\tau \theta)^2 \right\} \quad (35)$$

is the action functional of the phase field (Goldstone field) with J the phase stiffness and K the phase susceptibility.

At $T = 0$ we find

$$J = \frac{\epsilon_F}{4\pi}, \quad K = \frac{m}{4\pi}, \quad (36)$$

and the velocity c_θ of the Goldstone field reads

$$c_\theta = \sqrt{\frac{J}{K}} = \frac{v_F}{\sqrt{2}} = c_s. \quad (37)$$

Beyond mean-field (III)

Figure: Upper panel: 2D scaled sound velocity c_s/v_F vs scaled binding energy ϵ_B/ϵ_F. Lower panel: 3D scaled sound velocity c_s/v_F vs scaled inverse interaction strength $1/(k_F a)$.
The renormalization-group theory12 dictates that for our 2D system the superfluid density n_s is zero above the Berezinskii-Kosterlitz-Thouless critical temperature T_{BKT}. Moreover below T_{BKT} the superfluid density can be written as

\[n_s(T) = \frac{4m}{\hbar^2} J(T) \quad \text{for} \ T < T_{BKT}, \quad (38) \]

and the critical temperature T_{BKT} can be estimated by solving self-consistently

\[k_B T_{BKT} = \frac{\pi}{2} J(T_{BKT}), \quad (39) \]

where $J(T)$ is the finite-temperature stiffness of our action functional S_θ of the phase.

Beyond mean-field (V)

Figure: Dashed line: temperature T^* above which Δ_0 is zero; solid line: Berezinskii-Kosterlitz-Thouless critical temperature T_{BKT}.
Figure: Superfluid fraction n_s/n as a function of the scaled temperature T/T_{BKT} for different values of the scaled binding energy ϵ_B/ϵ_F, where $\epsilon_F = (\hbar^2/m)\pi n$ is the Fermi energy. Above T_{BKT} one has $n_s = 0$.
There are several open problems regarding our 2D Fermi superfluid in the BCS-BEC crossover. Among them we mention:

- first and second sound at finite temperature
- quasi-condensate at finite temperature
- beyond mean-field equation of state
- unbalanced system
THANK YOU FOR YOUR ATTENTION!

We acknowledge research grants from: