Resonant Fermi gas of atoms with spin-orbit coupling

Luca Salasnich

Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Italy

Barcelona, January 8, 2013

Collaboration with:
Luca Dell’Anna, Giovanni Mazzarella, Flavio Toigo (Università di Padova)
Summary

- BCS-BEC crossover
- Artificial spin-orbit coupling
- Mean-field approach
- Gap and number equations
- Singlet and triplet condensate
- Results with Rashba coupling at $T = 0$
- Conclusions
- Acknowledgments
In 2004 the BCS-BEC crossover has been observed with ultracold gases made of fermionic 40K and 6Li alkali-metal atoms.\(^1\)

This crossover is obtained by changing (with a Feshbach resonance) the s-wave scattering length a_s of the inter-atomic potential:
- $a_s \rightarrow 0^-$ (BCS regime of weakly-interacting Cooper pairs)
- $a_s \rightarrow \pm \infty$ (unitarity limit of strongly-interacting Cooper pairs)
- $a_s \rightarrow 0^+$ (BEC regime of bosonic dimers)

\(^1\)C.A. Regal et al., PRL 92, 040403 (2004); M.W. Zwierlein et al., PRL 92, 120403 (2004); M. Bartenstein, A. Altmeyer et al., PRL 92, 120401 (2004); J. Kinast et al., PRL 92, 150402 (2004).
The crossover from a BCS superfluid ($a_s < 0$) to a BEC of molecular pairs ($a_s > 0$) has been investigated experimentally around a Feshbach resonance, where the s-wave scattering length a_s diverges, and it has been shown that the system is (meta)stable. The detection of quantized vortices under rotation\(^2\) has clarified that this dilute and ultracold gas of Fermi atoms is superfluid. Usually the BCS-BEC crossover is analyzed in terms of

\[y = \frac{1}{k_F a_s} \quad (1) \]

the inverse scaled interaction strength, where $k_F = (3\pi^2 n)^{1/3}$ is the Fermi wave number and n the total density. The system is dilute because $r_e k_F \ll 1$, with r_e the effective range of the inter-atomic potential.

In 2011 and 2012 artificial spin-orbit coupling has been imposed on both bosonic\(^3\) and fermionic\(^4\) atomic gases. The single-particle Hamiltonian \(\hat{h}_{sp}\) with both Rashba and Dresselhaus spin-orbit couplings reads

\[
\hat{h}_{sp} = \frac{\hat{p}^2}{2m} + v_R (\hat{\sigma}_1 \hat{p}_y - \hat{\sigma}_2 \hat{p}_x) + v_D (\hat{\sigma}_1 \hat{p}_y + \hat{\sigma}_2 \hat{p}_x),
\]

with \(\hat{p}^2 = -\hbar^2 \nabla^2\), \(\hat{p}_x = -i\hbar \frac{\partial}{\partial x}\), \(\hat{p}_y = -i\hbar \frac{\partial}{\partial y}\), \(v_R\) and \(v_D\) the Rashba and Dresselhaus coupling constant, respectively, and

\[
\hat{\sigma}_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \hat{\sigma}_2 = \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}.
\]

\(^4\)P. Wang et al., PRL 109, 095301 (2012); L.W. Cheuk et al., PRL 109, 095302 (2012).
The partition function Z of the uniform two-spin-component Fermi system at temperature T, in a volume V, and with chemical potential μ can be written in terms of a functional integral as

$$Z = \int \mathcal{D}[\psi_s, \bar{\psi}_s] \exp \left\{ -\frac{1}{\hbar} S \right\},$$

where

$$S = \int_0^{\hbar \beta} d\tau \int_V d^3r \, \mathcal{L}$$

is the Euclidean action functional and \mathcal{L} is the Euclidean Lagrangian density, given by

$$\mathcal{L} = (\bar{\psi}_\uparrow, \bar{\psi}_\downarrow) \left[\hbar \partial_\tau + \hbar_{sp} - \mu \right] \left(\begin{array}{c} \psi_\uparrow \\ \psi_\downarrow \end{array} \right) + g \, \bar{\psi}_\uparrow \bar{\psi}_\downarrow \psi_\downarrow \psi_\uparrow$$

with g is the strength of the s-wave coupling ($g < 0$ in the BCS regime). Notice that $\beta = 1/(k_B T)$ with k_B the Boltzmann constant. In the rest of the seminar we shall use units such that $\hbar = m = k_B = 1$.

The Lagrangian density \mathcal{L} is quartic in the fermionic fields ψ_s, but one can reduce the problem to a quadratic Lagrangian density by introducing an auxiliary complex scalar field $\Delta(r, \tau)$ via Hubbard-Stratonovich transformation\(^5\), which gives

$$ Z = \int \mathcal{D}[\psi_s, \bar{\psi}_s] \mathcal{D}[\Delta, \bar{\Delta}] \exp \{-S_e\}, \quad (6) $$

where

$$ S_e = \int_0^{1/T} d\tau \int_V d^3r \mathcal{L}_e \quad (7) $$

and the (exact) effective Euclidean Lagrangian density \mathcal{L}_e reads

$$ \mathcal{L}_e = (\bar{\psi}_\uparrow, \bar{\psi}_\downarrow) \left[\partial_\tau + \hat{h}_{sp} - \mu \right] \begin{pmatrix} \psi_\uparrow \\ \psi_\downarrow \end{pmatrix} + \bar{\Delta} \psi_\downarrow \psi_\uparrow + \Delta \bar{\psi}_\uparrow \bar{\psi}_\downarrow - \frac{|\Delta|^2}{g}. \quad (8) $$

Mean-field approach (III)

It is a standard procedure to integrate out the quadratic fermionic fields and to get a new formally-exact effective action S_{eff} which depends only on the auxiliary field $\Delta(r, \tau)$. In this way we obtain

$$Z = \int \mathcal{D}[\Delta, \bar{\Delta}] \exp \{-S_{\text{eff}}\},$$

where

$$S_{\text{eff}} = -Tr[\ln (G^{-1})] - \int_{0}^{1/T} d\tau \int_{V} d^{3}r \frac{|\Delta|^{2}}{g}$$

with $\gamma(\hat{p}) = v_{R}(\hat{p}_{y} + i\hat{p}_{x}) + v_{D}(\hat{p}_{y} - i\hat{p}_{x})$ and

$$G^{-1} = \begin{pmatrix}
\partial_{\tau} + \frac{\hat{p}^{2}}{2m} - \mu & \Delta & \gamma(\hat{p}) & 0 \\
\Delta & \partial_{\tau} - \frac{\hat{p}^{2}}{2m} + \mu & 0 & -\gamma(-\hat{p}) \\
\bar{\gamma}(\hat{p}) & 0 & \partial_{\tau} + \frac{\hat{p}^{2}}{2m} - \mu & \Delta \\
0 & -\bar{\gamma}(-\hat{p}) & \Delta & \partial_{\tau} - \frac{\hat{p}^{2}}{2m} + \mu
\end{pmatrix}$$
Mean-field approach (IV)

For a uniform Fermi superfluid within the simplest mean-field approximation one has a constant and real gap parameter, i.e. \(\Delta(r, \tau) = \Delta \), and the partition function becomes\(^6\)

\[
Z_{mf} = \exp \left\{ -S_{mf} \right\} = \exp \left\{ -\frac{\Omega_{mf}}{T} \right\}, \quad (12)
\]

where

\[
S_{mf} = \frac{\Omega_{mf}}{T} = -\sum_k \left[\sum_{j=1}^{4} \ln \left(1 + e^{-E_{k,j}/T} \right) - \frac{\xi_k}{T} \right] - \frac{V}{T} \frac{\Delta^2}{g} \quad (13)
\]

with \(\xi_k = \hbar^2 k^2 / (2m) - \mu \), \(\gamma_k = \hbar \nu_R (k_y + ik_x) + \hbar \nu_D (k_y - ik_x) \), and

\[
E_{k,1} = \sqrt{\xi_k - |\gamma_k|^2 + \Delta^2}, \quad E_{k,3} = -E_{k,1}, \quad (14)
\]
\[
E_{k,2} = \sqrt{(\xi_k + |\gamma_k|^2 + \Delta^2}, \quad E_{k,4} = -E_{k,2}. \quad (15)
\]

\(^6\)L. Dell’Anna, G. Mazzarella, L.S., PRA 84, 033633 (2011).
Gap and number equations (I)

The constant and real gap parameter Δ is obtained from

$$\frac{\partial S_{mf}}{\partial \Delta} = 0 ,$$ \hspace{1cm} (16)

which gives the **gap equation**

$$- \frac{1}{g} = \frac{1}{V} \sum_k \sum_{j=1,2} \frac{\tanh (E_{k,j}/2T)}{4E_{k,j}} .$$ \hspace{1cm} (17)

The integral on the right side of this equation is formally divergent. However, expressing the bare interaction strength g in terms of the physical scattering length a_s with the formula7

$$- \frac{1}{g} = - \frac{1}{4\pi a_s} + \frac{1}{V} \sum_k \frac{1}{k^2}$$ \hspace{1cm} (18)

one obtains the **regularized gap equation8**

$$- \frac{1}{4\pi a_s} = \frac{1}{V} \sum_k \left[\sum_{j=1,2} \frac{\tanh (E_{k,j}/2T)}{4E_{k,j}} - \frac{1}{k^2} \right] .$$ \hspace{1cm} (19)

From the thermodynamic formula

\[N = - \left(\frac{\partial \Omega_{mf}}{\partial \mu} \right)_{V,T} \]

(20)

one obtains also the equation for the number of particles\(^9\)

\[N = \sum_k \left(1 - \frac{\xi_k - |\gamma_k|}{2E_{k,1}} \tanh \left(\frac{E_{k,1}}{2T} \right) - \frac{\xi_k + |\gamma_k|}{2E_{k,2}} \tanh \left(\frac{E_{k,2}}{2T} \right) \right) . \]

(21)

Singlet and triplet condensation (I)

In a Fermi system the largest eigenvalue N_C of the two-body density matrix gives the number of fermion pairs which have their center of mass with zero linear momentum.10 This condensed number of pairs is given by

$$N_C = N_0 + N_1 ,$$

where

$$N_0 = 2 \int d^3r \, d^3r' \, |\langle \psi_\downarrow(r) \, \psi_\uparrow(r') \rangle|^2 ,$$

is the condensed number of pairs in the singlet state (spin 0), while

$$N_1 = 2 \int d^3r \, d^3r' \, |\langle \psi_\uparrow(r) \, \psi_\uparrow(r') \rangle|^2 .$$

is the condensed number of pairs in the triplet state (spin 1).

Singlet and triplet condensation (II)

In our superfluid Fermi system with spin-orbit coupling we obtain11

\[N_0 = \frac{\Delta^2}{4} \sum_k \left(\frac{1}{2E_{k,1}} \tanh \left(\frac{E_{k,1}}{2T} \right) + \frac{1}{2E_{k,2}} \tanh \left(\frac{E_{k,2}}{2T} \right) \right)^2 . \] \hspace{1cm} (25)

and

\[N_1 = \frac{\Delta^2}{4} \sum_k \left(\frac{1}{2E_{k,1}} \tanh \left(\frac{E_{k,1}}{2T} \right) - \frac{1}{2E_{k,2}} \tanh \left(\frac{E_{k,2}}{2T} \right) \right)^2 . \] \hspace{1cm} (26)

Notice that in the absence of spin-orbit coupling \((v_R = v_D = 0)\) one has \(E_{k,1} = E_{k,2}\) and consequently the condensate number \(N_1\) of Cooper pairs in the triplet state is zero.

11L. Dell’Anna, G. Mazzarella, L.S., PRA 84, 033633 (2011).
Results with Rashba coupling at $T = 0$ (I)

We are interested in the low temperature regime where the condensate fraction can be quite large. Quantitatively we restrict our study to the zero temperature limit ($T=0$). In the equations above we have therefore simply $\tanh(E_{k,j}/2T) \rightarrow 1$.

In this way the regularized gap equation is given by

$$\frac{1}{4\pi a_s} = \frac{1}{V} \sum_k \left[\sum_{j=1,2} \frac{1}{4E_{k,j}} - \frac{1}{k^2} \right],$$

while the number equation reads

$$N = \sum_k \left(1 - \frac{\xi_k - |\gamma_k|}{2E_{k,1}} - \frac{\xi_k + |\gamma_k|}{2E_{k,2}} \right).$$
Similarly, we obtain for the singlet condensate number

\[N_0 = \frac{\Delta^2}{4} \sum_k \left(\frac{1}{2E_{k,1}} \pm \frac{1}{2E_{k,2}} \right)^2. \]

(29)

and for the triplet condensate number

\[N_1 = \frac{\Delta^2}{4} \sum_k \left(\frac{1}{2E_{k,1}} - \frac{1}{2E_{k,2}} \right)^2. \]

(30)

From the previous equations one can calculate the chemical potential \(\mu \), the energy gap \(\Delta \), and also the condensate fractions \(N_0/N \) and \(N_1/N \), as a function of the scaled interaction strength \(y = 1/(k_F a_S) \).

For simplicity, we show the results obtained for \(\nu_D = 0 \), i.e. when only Rashba spin-orbit coupling is active.
Results with Rashba coupling at $T = 0$ (III)

Scaled chemical potential μ/ϵ_F as a function of the adimensional interaction strength $y = 1/(k_F a_s)$ for different values of the scaled Rashba velocity: $v_R/v_F = 0$ (solid line), $v_R/v_F = 0.7$ (long-dashed line), $v_R/v_F = 1$ (short-dashed line), $v_R/v_F = 1.4$ (dotted line), $v_R/v_F = 2$ (dashed-dotted line). Here $\epsilon_F = v_F^2/2$ is the Fermi energy and $v_F = (3\pi^2 n)^{1/3}$ is the Fermi velocity.
Results with Rashba coupling at $T = 0$ (VI)

Scaled energy gap Δ/ϵ_F as a function of the adimensional interaction strength $y = 1/(k_F a_s)$ for different values of the scaled Rashba velocity: $v_R/v_F = 0$ (solid line), $v_R/v_F = 0.7$ (long-dashed line), $v_R/v_F = 1$ (short-dashed line), $v_R/v_F = 1.4$ (dotted line), $v_R/v_F = 2$ (dashed-dotted line). Here $\epsilon_F = v_F^2/2$ is the Fermi energy and $v_F = (3\pi^2 n)^{1/3}$ is the Fermi velocity.
Results with Rashba coupling at $T = 0$ (V)

Singlet condensate fraction N_0/N (upper curves) and triplet condensate fraction N_1/N (lower curves) as a function of the adimensional interaction strength $y = 1/(k_F a_s)$ for different values of the scaled Rashba velocity: $v_R/v_F = 0$ (solid line), $v_R/v_F = 0.7$ (long-dashed line), $v_R/v_F = 1$ (short-dashed line), $v_R/v_F = 1.4$ (dotted line), $v_R/v_F = 2$ (dashed-dotted line). Here $v_F = (3\pi^2 n)^{1/3}$ is the Fermi velocity.
Conclusions

Unlike the chemical potential μ and the pairing gap Δ which exhibit no particular behavior at the crossover, the condensate fraction is very peculiar.

The condensation of singlet pairs (N_0/N) is promoted by Rashba coupling in the BCS regime whereas it is suppressed in the BEC regime.

The triplet contribution N_1/N to the condensate fraction has not a monotonic behavior as a function of the scattering parameter, becoming larger close to the crossover.

In a recent paper12 we have shown that by including also the Dresselhaus spin-orbit coupling the singlet condensate fraction simply decreases, while the triplet condensate fraction is suppressed in the BCS regime and increased in the BEC regime.

12L. Dell’Anna, G. Mazzarella, L.S., PRA \textbf{86}, 053632 (2012).
THANK YOU FOR YOUR ATTENTION!

Our results on these and similar topics are published in
L.S., PRA 86, 055602 (2012).

We acknowledge research grants from: