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First vs second quantization (I)

In first quantization, the non-relativistic quantum Hamiltonian of N
interacting identical particles in the external potential U(r) is given by

Ĥ(N) =
N∑
i=1

[
− ~2

2m
∇2

i + U(ri )

]
+

1

2

∑
i,j=1
i 6=j

V (ri − rj) =
N∑
i=1

ĥi +
1

2

N∑
i,j=1
i 6=j

Vij ,

(1)
where V (r − r′) is the inter-particle potential.
In second quantization, the quantum field operator can be written as

ψ̂(r) =
∑
α

ĉα φα(r) (2)

where the φα(r) = 〈r|α〉 are the eigenfunctions of ĥ such that
ĥ|α〉 = εα|α〉, and ĉα and ĉ+

α are the annihilation and creation operators
of the single-particle state |α〉.



First vs second quantization (II)

We now introduce the quantum many-body Hamiltonian

Ĥ =
∑
α

εα ĉ+
α ĉα +

∑
αβγδ

Vαβγδ ĉ+
α ĉ

+
β ĉδ ĉγ , (3)

where

Vαβδγ =

∫
d3r d3r′ φ∗α(r) φ∗β(r′) V (r − r′) φδ(r′) φγ(r) . (4)

This Hamiltonian can be also written as

Ĥ =

∫
d3r ψ̂+(r)

[
− ~2

2m
∇2 + U(r)

]
ψ̂(r)

+
1

2

∫
d3r d3r′ ψ̂+(r) ψ̂+(r′) V (r − r′) ψ̂(r′) ψ̂(r) . (5)



First vs second quantization (III)

The meaningful connection between the second-quantization Hamiltonian
Ĥ and the first-quantization Hamiltonian Ĥ(N), which is given by the
formula

Ĥ|r1r2...rN〉 = Ĥ(N)|r1r2...rN〉 . (6)

In fact, after some calculations one finds that

ψ̂+(r) ĥ(r) ψ̂(r) |r1r2...rN〉 =
N∑
i=1

ĥ(ri )δ(r − ri ) |r1r2...rN〉 (7)

and also

ψ̂+(r) ψ̂+(r′)V (r, r′) ψ̂(r′) ψ̂(r) |r1r2...rN〉

=
N∑

i,j=1
i 6=j

V (ri , ri )δ(r − ri ) δ(r′ − rj) |r1r2...rN〉 . (8)

From these two expressions Eq. (6) follows immediately, after space
integration.



Coherent states for bosons (I)

The classical analog of the bosonic quantum field operator

ψ̂(r) =
∑
j

φj(r) ĉj (9)

is the complex classical field

ψ(r) =
∑
j

φα(r) cj (10)

such that
ψ̂(r)|ψ〉 = ψ(r)|ψ〉 , (11)

where
|ψ〉 =

∏
j

|cj〉 (12)

is the bosonic coherent state of the system, |cj〉 is the coherent state of
the bosonic operator ĉj , and cj is its complex eigenvalue, namely

ĉj |cj〉 = cj |cj〉 . (13)



Coherent states for fermions (I)

Similarly, one can introduce the pseudo-classical Grassmann analog of the
fermionic field operator by using fermionic coherent states. Thus, the
classical analog of the fermionic quantum field operator

ψ̂(r) =
∑
j

φj(r) ĉj (14)

is the Grassmann classical field

ψ(r) =
∑
j

φα(r) cj (15)

such that
ψ̂(r)|ψ〉 = ψ(r)|ψ〉 , (16)

where
|ψ〉 =

∏
j

|cj〉 (17)

is the fermionic coherent state of the system, |cj〉 is the coherent state of
the fermionic operator ĉj , and cj is its Grassmann eigenvalue, namely

ĉj |cj〉 = cj |cj〉 . (18)



Coherent states for fermions (II)

In the case of fermions, it is immedate to verify that, for mathematical
consistency, this eigenvalue cj must satisfy the following relationships

cj c̄j + c̄jcj = 1 , c2
j = c̄2

j = 0 , (19)

where c̄j is such that
〈c |ĉ+

j = c̄j〈c | . (20)

Obviously cj and c̄j are not complex numbers. They are instead
Grassmann numbers, namely elements of the Grassmann linear algebra
{1, cj , c̄j , c̄jcj} characterized by the independent basis elements 1, cj , c̄j ,
with 1 the identity (neutral) element.

The most general function on this Grassmann algebra is given by

f (c̄ , c) = f11 + f12 c + f21 c̄ + f22 c̄c , (21)

where f11, f12, f21, f22 are complex numbers. In fact, the function f (c̄ , c)
does not have higher powers of c , c̄ and c̄c because they are identically
zero.


