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Time-dependent Schrödinger equation (I)

In 1927 Paul Dirac suggested that the light field is composed of an
infinite number of quanta, the photons.

In the same year Eugene Wigner and Pascual Jordan proposed something
similar for the matter.

In non-relativistic quantum mechanics the matter field is nothing but the
single-particle Schrödinger field ψ(r, t) of quantum mechanics, which
satisfies the time-dependent Schrödinger equation

i~
∂

∂t
ψ(r, t) =

[
− ~2

2m
∇2 + U(r)

]
ψ(r, t) , (1)

where U(r) is the external potential acting on the quantum particle.



Time-dependent Schrödinger equation (II)

The Schrödinger field ψ(r, t) can be expanded as

ψ(r, t) =
∑
α

cα(t) φα(r) (2)

where φα(r) are the eigenfunctions of the stationary equation[
− ~2

2m
∇2 + U(r)

]
φα(r) = εαφα(r) (3)

with εα the eigenvalues and α the label which represents the set of
quantum numbers. The eigenfunctions are orthonormal, namely∫

d3r φ∗α(r)φβ(r) = δαβ . (4)

Inserting Eq. (2) into the time-dependent Schrödinger equation (1) one
easily finds

cα(t) = cα(0) e−iεαt/~ . (5)



Schrödinger energy (I)

The constant of motion associated to the Schrödinger field ψ(r, t) is the
average total energy of the system, given by

H =

∫
d3r ψ∗(r, t)

[
− ~2

2m
∇2 + U(r)

]
ψ(r, t) . (6)

Inserting the expansion (2) into the total energy we find

H =
∑
α

εα
2

(c∗αcα + cαc
∗
α) . (7)

This energy is obviously independent on time: the time dependence of
the complex amplitudes c∗α(t) and cα(t) cancels due to Eq. (5).



Schrödinger energy (II)

Instead of using the complex amplitudes c∗α(t) and cα(t) one can
introduce the real variables

qα(t) =

√
2~
ωα

1

2
(cα(t) + c∗α(t)) (8)

pα(t) =
√

2~ωα
1

2i
(cα(t)− c∗α(t)) (9)

such that the Schrödinger energy energy of the matter field reads

H =
∑
α

(
p2
α

2
+

1

2
ω2
α q

2
α

)
, (10)

where
ωα =

εα
~

(11)

is the eigenfrequency associated to the eigenenergy εα.
This energy is written in terms of an infinite set of real harmonic
oscillators: one oscillator for each mode characterized by quantum
numbers α and frequency ωα.



Second quantization (I)

The canonical quantization of the classical Hamiltonian (10) is obtained
by promoting the real coordinates qα and the real momenta pα to
operators:

qα → q̂α , (12)

pα → p̂α , (13)

satisfying the commutation relations

[q̂α, p̂β] = i~ δαβ , (14)

The quantum Hamiltonian is thus given by

Ĥ =
∑
α

(
p̂2
α

2
+

1

2
ω2
α q̂

2
α

)
. (15)

The formal difference between Eq. (10) and Eq. (15) is simply the
presence of the “hat symbol” in the canonical variables.



Second quantization (II)

We now introduce annihilation and creation operators

ĉα =

√
ωα
2~

(
q̂α +

i

ωα
p̂α

)
, (16)

ĉ+
α =

√
ωα
2~

(
q̂α −

i

ωα
p̂α

)
, (17)

which satisfy the commutation relations

[ĉα, ĉ
+
β ] = δα,β , [ĉα, ĉβ] = [ĉ+

α , ĉ
+
β ] = 0 , (18)

and the quantum Hamiltonian (15) becomes

Ĥ =
∑
α

εα

(
ĉ+
α ĉα +

1

2

)
. (19)



Second quantization (III)

The operators ĉα and ĉ+
α act in the Fock space of the “particles” of the

Schrödinger field. A generic state of this Fock space is given by

| ... nα ... nβ ... nγ ... 〉 , (20)

meaning that there are nα particles in the single-particle state |α〉, nβ
particles in the single-particle state |β〉, nγ particles in the single-particle
state |γ〉, et cetera.
The operators ĉα and ĉ+

α are called annihilation and creation operators
because they respectively destroy and create one particle in the
single-particle state |α〉, namely

ĉα| ... nα ... 〉 =
√
nα | ... nα − 1 ... 〉 , (21)

ĉ+
α | ... nα ... 〉 =

√
nα + 1 | ... nα + 1 ... 〉 . (22)

These properties follow directly from the commutation relations (18).



Second quantization (IV)

The vacuum state, where there are no particles, can be written as

|0〉 = | ... 0 ... 0 ... 0 ... 〉 , (23)

and

ĉα|0〉 = 0 , (24)

ĉ+
α |0〉 = |1α〉 = |α〉 , (25)

where |α〉 is such that
〈r|α〉 = φα(r) . (26)

From Eqs. (21) and (22) it follows immediately that

N̂α = ĉ+
α ĉα (27)

is the number operator which counts the number of particles in the
single-particle state |α〉, i.e.

N̂α| ... nα ... 〉 = nα | ... nα ... 〉 . (28)



Bosonic vs fermionic matter field (I)

The annihilation and creation operators ĉα and ĉ+
α which satisfy the

commutation rules (18) are called bosonic operators and the
corresponding quantum field operator

ψ̂(r, t) =
∑
α

ĉα(t) φα(r) (29)

is the bosonic field operator. Indeed the commutation rules (18) imply
Eqs. (21) and (22) and, as expected for bosons, there is no restriction on
the number of particles nα which can occupy in the single-particle state
|α〉.
To obtain fermionic properties it is sufficient to impose anti-commutation
rules for the operators ĉα and ĉ+

α , i.e.

{ĉα, ĉ+
β } = δαβ , {ĉα, ĉβ} = {ĉ+

α , ĉ
+
β } = 0 , (30)

where {Â, B̂} = ÂB̂ + B̂Â are the anti-commutation brackets.
An important consequence of anti-commutation is that

(ĉ+
α )2 = 0 . (31)

Moreover, the eigenvalues of N̂α can be only 0 and 1. This is exactly the
Pauli exclusion principle.


