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Klein-Gordon equation (I)

The classical energy of a nonrelativistic free particle is given by

E =
p2

2m
, (1)

where p is the linear momentum and m the mass of the particle. The
Schrödinger equation of the corresponding quantum particle with
wavefunction ψ(r, t) is easily obtained by imposing the quantization
prescription

E → i~
∂

∂t
, p→ −i~∇ . (2)

In this way one gets the time-dependent Schrödinger equation of the free
particle, namely

i~
∂

∂t
ψ(r, t) = − ~2

2m
∇2ψ(r, t) , (3)

obtained for the first time in 1926 by Erwin Schrödinger.



Klein-Gordon equation (II)

The classical energy of a relativistic free particle is instead given by

E =
√
p2c2 + m2c4 , (4)

where c is the speed of light in the vacuum. By applying directly the
quantization prescription (2) one finds

i~
∂

∂t
ψ(r, t) =

√
−~2c2∇2 + m2c4 ψ(r, t) . (5)

This equation is quite suggestive but the square-root operator on the
right side is a very difficult mathematical object.
For this reason in 1927 Oskar Klein and Walter Gordon suggested to start
with

E 2 = p2c2 + m2c4 (6)

and then to apply the quantization prescription (2). In this way one
obtains (

1

c2

∂2

∂t2
−∇2 +

m2c2

~2

)
ψ(r, t) = 0 , (7)

i.e. a generalization of Maxwell’s wave equation for massive particles.



Klein-Gordon equation (III)

The Klein-Gordon equation has two problems:
i) it admits solutions with negative energy;
ii) the space integral over the entire space of the non negative probability
density ρ(r, t) = |ψ(r, t)|2 ≥ 0 is generally not time-independent, namely

d

dt

∫
R3

ρ(r, t) d3r 6= 0 . (8)

Nowadays we know that to solve completely these two problems it is
necessary to promote ψ(r, t) to a quantum field operator. Within this
second-quantization (quantum field theory) approach the Klein-Gordon
equation is now used to describe relativistic particles with spin zero, like
the pions or the Higgs boson.



Dirac equation (I)

In 1928 Paul Dirac proposed a different approach to the quantization of
the relativistic particle. To solve the problem of Eq. (8) he considered a
wave equation with only first derivatives with respect to time and space
and introduced the classical energy

E = c α̂ · p + β̂mc2 , (9)

such that squaring it one recovers the Klein-Gordon equation. This
condition is fulfilled only if α̂ = (α̂1, α̂2, α̂3) and β̂ satisfy the following
algebra of matrices

α̂2
1 = α̂2

2 = α̂2
3 = β̂ 2 = Î , (10)

α̂i α̂j + α̂j α̂i = 0̂ , i 6= j (11)

α̂i β̂ + β̂ α̂i = 0̂ , ∀i (12)

where 1̂ is the identity matrix and 0̂ is the zero matrix.



Dirac equation (II)

The smallest dimension in which the so-called Dirac matrices α̂i and β̂
can be realized is four. In particular, one can write

α̂i =

(
0̂2 σ̂i
σ̂i 0̂2

)
, β̂ =

(
Î2 0̂2

0̂2 −Î2

)
, (13)

where Î2 is the 2× 2 identity matrix, 0̂2 is the 2× 2 zero matrix, and

σ̂1 =

(
0 1
1 0

)
σ̂2 =

(
0 −i
i 0

)
σ̂3 =

(
1 0
0 −1

)
(14)

are the Pauli matrices. Eq. (9) with the quantization prescription (2)
gives

i~
∂

∂t
Ψ(r, t) =

(
−i~c α̂ ·∇ + β̂mc2

)
Ψ(r, t) , (15)

which is the Dirac equation for a free particle.



Dirac equation (III)

The wavefunction Ψ(r, t) of the Dirac equation has four components in
the abstract space of Dirac matrices, i.e. this spinor field can be written

Ψ(r, t) =


ψ1(r, t)
ψ2(r, t)
ψ3(r, t)
ψ4(r, t)

 . (16)

In explicit matrix form the Dirac equation is thus given by

i~
∂

∂t


ψ1(r, t)
ψ2(r, t)
ψ3(r, t)
ψ4(r, t)

 = Ĥ


ψ1(r, t)
ψ2(r, t)
ψ3(r, t)
ψ4(r, t)

 (17)

where the matrix operator Ĥ is given by
mc2 0 −i~c ∂

∂z −i~c( ∂
∂x − i ∂

∂y )

0 mc2 −i~c( ∂
∂x + i ∂

∂y ) i~c ∂
∂z

−i~c ∂
∂z −i~c( ∂

∂x − i ∂
∂y ) −mc2 0

−i~c( ∂
∂x + i ∂

∂y ) i~c ∂
∂z 0 −mc2

 . (18)



Dirac equation (IV)

It is easy to show that the Dirac equation satisfies the differential law of
current conservation, given by

∂

∂t
ρ(r, t) + ∇ · j(r, t) = 0 , (19)

where

ρ(r, t) = Ψ+(r, t)Ψ(r, t) =
4∑

i=1

|ψi (r, t)|2 (20)

is the probability density, and j(r, t) is the probability current with three
components

jk(r, t) = c Ψ+(r, t)α̂kΨ(r, t) . (21)

Finally, we observe that from the continuity equation (19) one finds

d

dt

∫
R3

ρ(r, t) d3r = 0 , (22)

by using the divergence theorem and imposing a vanishing current density
on the border at infinity. Thus, contrary to the Klein-Gordon equation,
the Dirac equation does not have the probability density problem.


