Lesson 3 －Matter－Radiation Interaction Unit 3．1 Minimal coupling and dipole approximation

Luca Salasnich

Dipartimento di Fisica e Astronomia＂Galileo Galilei＂，Università di Padova

Structure of Matter－MSc in Physics

Minimal coupling (I)

Let us consider the hydrogen atom with Hamiltonian

$$
\begin{equation*}
\hat{H}_{m a t t}=\frac{\hat{\mathbf{p}}^{2}}{2 m}-\frac{e^{2}}{4 \pi \epsilon_{0}|\mathbf{r}|}, \tag{1}
\end{equation*}
$$

where $\hat{\mathbf{p}}=-i \hbar \boldsymbol{\nabla}$ is the linear momentum operator of the electron in the state $|\mathbf{p}\rangle$, and $e>0$ is the modulus of the electric charge of the electron. The minimal coupling with the electromagnetic field is obtained with the substitution

$$
\begin{equation*}
\hat{\mathbf{p}} \rightarrow \hat{\mathbf{p}}+e \hat{\mathbf{A}}(\mathbf{r}, t) \tag{2}
\end{equation*}
$$

where $\mathbf{A}(\mathbf{r}, t)$ is the vector potential of the electromagnetic field. In this way we have

$$
\begin{align*}
\hat{H}_{m a t t, \text { shift }} & =\frac{(\hat{\mathbf{p}}+e \hat{\mathbf{A}}(\mathbf{r}, t))^{2}}{2 m}-\frac{e^{2}}{4 \pi \epsilon_{0}|\mathbf{r}|} \\
& =\hat{H}_{m a t t}+\frac{e}{m} \hat{\mathbf{A}}(\mathbf{r}, t) \cdot \hat{\mathbf{p}}+\frac{e^{2}}{2 m} \hat{\mathbf{A}}(\mathbf{r}, t)^{2} \tag{3}
\end{align*}
$$

Dipole approximation (I)

The dipole approximation means

$$
\begin{equation*}
\hat{H}_{\text {matt }, \text { shift }} \simeq \hat{H}_{\text {matt }}+\hat{H}_{D}, \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
H_{D}=\frac{e}{m} \hat{\mathbf{A}}(\mathbf{0}, 0) \cdot \hat{\mathbf{p}} . \tag{5}
\end{equation*}
$$

This means that one neglects the term $\left(e^{2} / 2 m\right) \hat{\mathbf{A}}(\mathbf{r}, t)^{2}$ because it is quadratic correction with respect to the weak vector potential and one uses $\hat{\mathbf{A}}(\mathbf{0}, 0)$ instead of $\hat{\mathbf{A}}(\mathbf{r}, t)$.
The latter assumption, which corresponds to

$$
\begin{equation*}
e^{i \mathbf{k} \cdot \mathbf{r}}=1+i \mathbf{k} \cdot \mathbf{r}+\frac{1}{2}(i \mathbf{k} \cdot \mathbf{r})^{2}+\ldots \simeq 1 \tag{6}
\end{equation*}
$$

is reliable if $\mathbf{k} \cdot \mathbf{r} \ll 1$, namely if the electromagnetic radiation has a wavelength $\lambda=2 \pi /|\mathbf{k}|$ very large compared to the linear dimension R of the atom. Indeed, the approximation is fully justified in atomic physics where $\lambda \simeq 10^{-7} \mathrm{~m}$ and $R \simeq 10^{-10} \mathrm{~m}$.

Quantum electrodynamics (I)

The total Hamiltonian of the matter-radiation system in the dipole approximation is then given by

$$
\begin{equation*}
\hat{H}=\hat{H}_{0}+\hat{H}_{D} \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{H}_{0}=\hat{H}_{m a t t}+\hat{H}_{r a d} \tag{8}
\end{equation*}
$$

is the unperturbed Hamiltonian, such that

$$
\begin{equation*}
\hat{H}_{m a t t}=\frac{\hat{\mathbf{p}}^{2}}{2 m}-\frac{e^{2}}{4 \pi \epsilon_{0}|\mathbf{r}|} \tag{9}
\end{equation*}
$$

is the matter Hamiltonian, while the radiation Hamiltonian reads

$$
\begin{equation*}
\hat{H}_{r a d}=\sum_{\mathbf{k}} \sum_{s} \hbar \omega_{k} \hat{a}_{\mathbf{k s}}^{+} \hat{\mathrm{a}}_{\mathbf{k s}}, \tag{10}
\end{equation*}
$$

where \hat{a}_{ks} and $\hat{\mathrm{a}}_{\mathrm{ks}}$ are the annihilation and creation operators of the photon in the state $|\mathbf{k s}\rangle$.

Quantum electrodynamics (II)

The eigenstates of the unperturbed Hamiltonian \hat{H}_{0} are of the form

$$
\begin{equation*}
|a\rangle\left|\ldots n_{\mathrm{ks}} \ldots\right\rangle=|a\rangle \otimes\left|\ldots n_{\mathrm{ks}} \ldots\right\rangle \tag{11}
\end{equation*}
$$

where $|a\rangle$ is the eigenstate of $\hat{H}_{\text {matt }}$ with eigenvalue E_{a} and $\left|\ldots n_{k s} \ldots\right\rangle$ it the eigenstate of $\hat{H}_{r a d}$ with eigenvalue $\sum_{\mathbf{k s}} \hbar \omega_{k} n_{\mathbf{k s}}$, i.e.

$$
\begin{align*}
\hat{H}_{0}|a\rangle\left|\ldots n_{\mathrm{k} r} \ldots\right\rangle & =\left(\hat{H}_{\text {matt }}+\hat{H}_{\mathrm{rad}}\right)|a\rangle\left|\ldots n_{\mathrm{ks}} \ldots\right\rangle \\
& =\left(E_{a}+\sum_{\mathrm{ks}} \hbar \omega_{k} n_{\mathrm{ks}}\right)|a\rangle\left|\ldots n_{\mathrm{ks}} \ldots\right\rangle . \tag{12}
\end{align*}
$$

