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Classical energy and Fourier expansion (I)

A familiar result of electromagnetism is that the classical energy of the
electromagnetic field in vacuum is given by

H =

∫
d3r

(
ε0

2
E(r, t)2 +

1

2µ0
B(r, t)2

)
. (1)

Remember that in the Coulomb gauge we have

E = −∂A
∂t

, (2)

B = ∇ ∧ A , (3)

and consequently

H =

∫
d3r

(ε0

2

(∂A(r, t)

∂t

)2
+

1

2µ0

(
∇ ∧ A(r, t)

)2
)

(4)



Classical energy and Fourier expansion (II)

We now expand the vector potential A(r, t) as a Fourier series of
monochromatic plane waves:

A(r, t) =
∑
k

∑
s

[
Aks(t)

e ik·r√
V

+ A∗ks(t)
e−ik·r√

V

]
εks , (5)

where
Aks(t) = Aks(0) e−iωk t (6)

and
A∗ks(t) = A∗ks(0) e iωk t (7)

are the dimensional complex conjugate coefficients of the expansion, the
complex plane waves e ik·r/

√
V normalized in a volume V are the basis

functions of the expansion, and εk1 and εk2 are two mutually orthogonal
real unit vectors of polarization which are also orthogonal to k.
Inserting this Fourier expansion into the total energy H of the
electromagnetic field we get

H =
∑
k

∑
s

ε0ω
2
k (A∗ksAks + AksA

∗
ks) . (8)



Classical energy and Fourier expansion (III)

It is now convenient to introduce dimensionless complex coefficients
aks(t) and a∗ks(t) related to the dimensional complex coefficients Aks(t)
and A∗ks(t) by

Aks(t) =

√
~

2ε0ωk
aks(t) . (9)

A∗ks(t) =

√
~

2ε0ωk
a∗ks(t) . (10)

In this way the energy H reads

H =
∑
k

∑
s

~ωk

2
(a∗ksaks + aksa

∗
ks) . (11)

Instead of using the complex amplitudes a∗ks(t) and aks(t) one can
introduce the real variables

qks(t) =

√
2~
ωk

1

2
(aks(t) + a∗ks(t)) (12)

pks(t) =
√

2~ωk
1

2i
(aks(t)− a∗ks(t)) . (13)



Quantization of the single modes (I)

In this way the energy of the radiation field reads

H =
∑
k

∑
s

(
p2
k,s

2
+

1

2
ω2
k q

2
ks

)
. (14)

This energy resembles that of infinitely many harmonic oscillators with
unitary mass and frequency ωk .
In 1927 Paul Dirac performed the quantization of the classical
Hamiltonian (14) by promoting the real coordinates qks and the real
momenta pks to operators:

qks → q̂ks , (15)

pks → p̂ks , (16)

satisfying the commutation relations

[q̂ks , p̂k′s′ ] = i~ δk,k′ δs,s′ , (17)

where [Â, B̂] = ÂB̂ − B̂Â.



Quantization of the single modes (II)

The quantum Hamiltonian is thus given by

Ĥ =
∑
k

∑
s

(
p̂2
k,s

2
+

1

2
ω2
k q̂

2
ks

)
. (18)

Following a standard approach for the canonical quantization of the
Harmonic oscillator, we introduce annihilation and creation operators

âks =

√
ωk

2~

(
q̂ks +

i

ωk
p̂ks

)
, (19)

â+
ks =

√
ωk

2~

(
q̂ks −

i

ωk
p̂ks

)
, (20)

which satisfy the commutation relations

[âks , â
+
k′s′ ] = δk,k′ δs,s′ , (21)

and the quantum Hamiltonian (18) becomes

Ĥ =
∑
k

∑
s

~ωk

(
â+
ks âks +

1

2

)
. (22)



Ladder operators and their properties (I)

The operators âks and â+
ks act in the Fock space F , i.e. the infinite

dimensional Hilbert space of “number representation” introduced in 1932
by Vladimir Fock. A generic state of this Fock space F is given by

| ... nks ... nk′s′ ... nk′′s′′ ... 〉 , (23)

meaning that there are nks photons with wavevector k and polarization s,
nk′s′ photons with wavevector k′ and polarization s ′, nk′′s′′ photons with
wavevector k′′ and polarization s ′′, et cetera.
Notice that in the definition of the Fock space F one must include the
space of 0 photons, containing only the vacuum state

|0〉 = | ... 0 ... 0 ... 0 ... 〉 . (24)

The operators âks and â+
ks are called ladder operators, or annihilation and

creation operators, because they respectively destroy and create one
photon with wavevector k and polarization s, namely

âks | ... nks ... 〉 =
√
nks | ... nks − 1 ... 〉 , (25)

â+
ks | ... nks ... 〉 =

√
nks + 1 | ... nks + 1 ... 〉 . (26)



Ladder operators and their properties (II)

From Eqs. (25) and (26) it follows immediately that

N̂ks = â+
ks âks (27)

is the number operator which counts the number of photons in the
single-particle state |ks〉, i.e.

N̂ks | ... nks ... 〉 = nks | ... nks ... 〉 . (28)

The quantum Hamiltonian of the light can be then written as

Ĥ =
∑
k

∑
s

~ωk

(
N̂ks +

1

2

)
. (29)

In the case of the quantum electromagnetic field there is an infinite
number of quantum harmonic oscillators and the total zero-point energy
is given by

Evac =
∑
k

∑
s

1

2
~ωk . (30)

This infinite constant Evac is usually eliminated by simply shifting to zero
the energy associated to the vacuum state |0〉.


