LIST OF PUBLICATIONS
OF LUCA SALASNICH

According to ISI Web of Science – Thomson Reuters - All Databases, my publications got more than 4020 citations with h-index $h = 35$. See TABLES of impact factors and citations.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>210 (47 single-authored)</td>
<td>20 (7 single-authored)</td>
<td>5 (3 single-authored)</td>
</tr>
</tbody>
</table>

Papers in ISI-indexed Journals

[1] V.R. Manfredi and L. Salasnich,
"Short Orbit Distribution in the Semiclassical Limit of the SU(3) Nuclear Model",

"Quasi-Crossing Distribution as Signature of the Onset of Chaos in the SU(3) Nuclear Model",

"From Regular to Chaotic States in Atomic Nuclei",

"Accuracy in the Semi-Classical Approximation: the Pullen Edmonds Hamiltonian",

[5] L. Salasnich,
"Chaos Suppression in the SU(2) Yang-Mills-Higgs System",

[6] L. Salasnich,
"Instabilities, Point Attractors and Limit Cycles in a Inflationary Universe",

[7] V.R. Manfredi and L. Salasnich,
"The Onset of Chaos with a Quadrupole-Quadrupole Interaction",

[8] L. Salasnich and F. Sattin,
"Charge Exchange Processes between Excited Helium and Fully Stripped Ions",

"Quantal Overlapping Resonance Criterion: the Pullen Edmonds Model",

[10] V.R. Manfredi and L. Salasnich,
"Order and Chaos in Roto-Vibrational States of Atomic Nuclei",

"Quantum Corrections to the Semi-Classical Quantization of the SU(3) Shell Model",

"Quantum Chaos in A=46-50 Atomic Nuclei",

[28] L. Salasnich,

[29] M. Morandi Cecchi and L. Salasnich,

[32] F. Sattin and L. Salasnich,

[33] L. Reatto, A. Parola and L. Salasnich,

[34] E. Cerboneschi, R. Mannella, E. Arimondo, and L. Salasnich,

[35] L. Salasnich,

[36] F. Sattin and L. Salasnich,

[37] L. Salasnich, A. Parola, and L. Reatto,

[38] V.R. Manfredi and L. Salasnich,

[39] L. Salasnich, A. Parola, and L. Reatto,

[40] L. Salasnich,

[41] L. Salasnich,

[42] L. Salasnich,

[59] L. Salasnich, A. Parola, and L. Reatto,

[60] L. Salasnich, A. Parola, and L. Reatto,

[61] L. Salasnich,

[62] L. Salasnich,

[63] L. Salasnich,

[64] V.R. Manfredi, V. Penna, and L. Salasnich,

[65] L. Salasnich, A. Parola, and L. Reatto,

[66] L. Salasnich,
"3D BEC Solitons under Transverse Confinement: Analytical Results with the Nonpolynomial Schrödinger Equation", *Progress of Theoretical Physics Supplement*, numb. 150, 415-418 (2003).

[67] N. Piovella, L. Salasnich, R. Bonifacio and G. Robb,

[68] L. Salasnich,

[69] L. Salasnich, A. Parola, and L. Reatto,

[70] L. Salasnich, A. Parola, and L. Reatto,

[71] L. Salasnich,

[72] L. Salasnich,

[73] N. Manini and L. Salasnich,

[75] L. Salasnich,
 "Colored Noise in Quantum Chaos",

[76] L. Salasnich, N. Manini, and A. Parola,
 "Condensate Fraction of a Fermi Gas in the BCS-BEC crossover",

[77] L. Salasnich, A. Parola, and L. Reatto,
 "Quasi One-Dimensional Bosons in Three-dimensional Traps: from weak-coupling to strong-coupling regime",

[78] A. Parola, L. Salasnich, R. Rota, and L. Reatto,
 "Quantum Phases of Attractive Matter Waves in a Confining Three-Dimensional Ring",
 Physical Review A, vol. 72, 063612 (2005).

[79] L. Salasnich,
 "Beyond Mean-Field Theory for Attractive Bosons under Transverse Harmonic Confinement",

[80] G. Diana, N. Manini, and L. Salasnich,
 "Expansion of a Fermi Gas in the BCS-BEC Crossover",
 Physical Review A, vol. 73, 065601 (2006).

[81] L. Salasnich, A. Parola, and L. Reatto,
 "Dimensional Effects on Solitonic Matter and Optical Waves with Normal and Anomalous Dispersion",

[82] L. Salasnich, A. Parola, and L. Reatto,
 "Thermodynamics of Solitonic Matter Waves in a Toroidal Trap",

[83] L. Salasnich and B.A. Malomed,
 "Vector Solitons in Nearly-One-Dimensional Bose-Einstein Condensates",

[84] L. Salasnich and N. Manini,
 "Mean-Field vs Monte-Carlo Equation of State for the Expansion of a Fermi Superfluid in the BCS-BEC Crossover",

[85] L. Salasnich and F. Toigo,
 "Fermi-Bose Mixture across a Feshbach Resonance",

[86] L. Salasnich, S.A. Adhikari, and F. Toigo,
 "Self-Bound Droplet of Bose and Fermi Atoms in One Dimension: Collective properties in mean-field and Tonks-Girardeau regimes",

[87] L. Salasnich, A. Cetoli, B.A. Malomed, and F. Toigo,
 "Nearby-One-Dimensional Attractive Bose-Einstein Condensates in Optical Lattices",

[88] L. Salasnich, N. Manini, F. Bonelli, M. Korbman, and A. Parola,
 "Self-induced Density Modulations in the Free Expansion of a Bose-Einstein Condensate",

[89] S.K. Adhikari and L. Salasnich,
 "Mixing-Demixing and Collapse of a Vortex State in a Quasi-Two-Dimensional Boson-Fermion Mixture",

[90] L. Salasnich, A. Cetoli, B.A. Malomed, F. Toigo, and L. Reatto,
 "Bose-Einstein Condensates under a Spatially-Modulated Transverse Confinement",
[91] L. Salasnich,
"Condensate Fraction of a Two-Dimensional Attractive Fermi Gas",

[92] L. Salasnich,
"Kirzhnits Gradient Expansion for a D-dimensional Fermi Gas",

[93] S.K. Adhikari and L. Salasnich,
"One-dimensional superfluid Bose-Fermi mixture: mixing, demixing and bright solitons",

[94] L. Salasnich, B.A. Malomed and F. Toigo,
"Matter-wave vortices in cigar-shaped and toroidal waveguides",

[95] L. Salasnich and F. Toigo,
"Shell Effects in the First Sound Velocity of an Ultracold Fermi Gas",

[96] S.K. Adhikari and L. Salasnich,
"Nonlinear Schrödinger Equation for a Superfluid Bose Gas from Weak Coupling to Unitarity: Study of Vortices",

[97] L. Salasnich, B.A. Malomed, and F. Toigo,
"Effects of Axial Vorticity in Elongated Mixtures of Bose-Einstein Condensates",

[98] L. Salasnich, N. Manini, and F. Toigo,
"Macroscopic Periodic Tunneling with Fermi Atoms in the BCS-BEC crossover",

[99] A. Maluckov, L. Hadzievski, B.A. Malomed, and L. Salasnich,
"Solitons in the discrete nonpolynomial Schrödinger equation",

[100] S.K. Adhikari and L. Salasnich,
"Superfluid Bose-Fermi mixture from weak-coupling to unitarity",

[101] L. Salasnich and F. Toigo,
"Extended Thomas-Fermi Density Functional for the Unitary Fermi Gas",
Physical Review A, vol. 78, 053626 (2008). (see also [122]).

[102] S.K. Adhikari and L. Salasnich,
"Effective nonlinear Schrödinger equations for cigar-shaped and disk-shaped Fermi superfluids at unitarity",

[103] G. Mazzarella, L. Salasnich, and F. Toigo,
"Zero sound and first sound in a disk-shaped Fermi Gases",

[104] F. Ancilotto, L. Salasnich, and F. Toigo,
"dc Josephson effect with Fermi gases in the Bose-Einstein regime",

[105] L. Salasnich, F. Ancilotto, N. Manini, and F. Toigo,
"dc and ac Josephson effect with ultracold Fermi atoms across a Feshbach resonance",

[106] L. Salasnich,
"Hydrodynamics of Bose and Fermi superfluids at zero temperature: the superfluid nonlinear Schrodinger equation",

[122] L. Salasnich and F. Toigo,
"Erratum: Extended Thomas-Fermi Density Functional for the Unitary Fermi Gas",
Physical Review A, vol. 82, 059902 (2010).

[123] L.E. Young, L. Salasnich, and S.K. Adhikari,
"Dimensional reduction of a binary Bose-Einstein condensate in mixed dimensions",
Physical Review A, vol. 82, 053601 (2010).

[124] L. Salasnich,
"Low-temperature thermodynamics of the unitary Fermi gas: superfluid fraction, first sound and second sound",
Physical Review A, vol. 82, 063619 (2010).

[125] G. Mazzarella, L. Salasnich, B.A. Malomed, M. Salerno, and F. Toigo,
"Rabi-Josephson oscillations and self-trapped dynamics in atomic junctions with two bosonic species",

[126] L. Salasnich,
"Condensate formation with three-component ultracold fermions",

[127] G. Mazzarella, L. Salasnich, A. Parola, and F. Toigo,
"Coherence and entanglement in the ground-state of a bosonic Josephson junction: From macroscopic Schrödinger-cat states to separable Fock states",

[128] L. Dell’Anna, G. Mazzarella, and L. Salasnich,
"Condensate fraction of a resonant Fermi gas with spin-orbit coupling in three and two dimensions",
Physical Review A, vol. 84, 033633 (2011).

"Destruction of attractive bosonic cloud due to high spatial coherence in tight trap",

[130] L. Salasnich and F. Toigo,
"Viscosity-entropy ratio of the unitary Fermi gas from zero-temperature elementary excitations",

[131] L. Salasnich,
"Supersonic and subsonic shock waves in the unitary Fermi gas",

[132] L. Salasnich,
"Condensate fraction in neutron matter",

[133] L. Salasnich and B.A. Malomed,
"Spontaneous Symmetry breaking in linearly coupled disk-shaped Bose-Einstein condensates",

[134] L. Salasnich and B.A. Malomed,
"Quasi one-dimensional Bose-Einstein condensates in nonlinear lattices",

[135] F. Ancilotto, L. Salasnich, and F. Toigo,
"Shock waves in strongly interacting Fermi gas from time-dependent density functional calculations",

[136] L. Salasnich and F. Toigo,
"Pair condensation in the BCS-BEC crossover of ultracold atoms loaded onto a 2D square lattice",

[151] L. Salasnich,
"Two-dimensional quasi-ideal Fermi gas with Rashba spin-orbit coupling",

[152] N. Bellomo, G. Mazzarella, and L. Salasnich,
"Superfluid hydrodynamics of polytropic gases: dimensional reduction and sound velocity",

[153] M. Rossi, L. Salasnich, F. Ancilotto, and F. Toigo,
"Monte-Carlo Simulations of the Unitary Bose Gas",

[154] L. Barbiero and L. Salasnich,
"Quantum bright soliton in a one-dimensional optical lattice",

"Josephson physics of spin-orbit coupled elongated Bose-Einstein condensates",

[156] G. Szirmai, G. Mazzarella, and L. Salasnich,
"The effect of a laser dip in the semiclassical dynamics of bosonic Josephson junctions",

[157] G. Bighin, L. Dell’Anna, G. Mazzarella, and L. Salasnich,
"Pair condensation of polarized fermions in the BCS-BEC crossover",

[158] L. Salasnich, W. Cardoso, and B.A. Malomed,
"Localized modes in quasi-2D Bose-Einstein condensates with spin-orbit and Rabi couplings",

[159] L. Salasnich, B.A. Malomed, and F. Toigo,
"Emulation of lossless excition-polariton condensates by dual-core optical waveguides: Stability, collective modes, and dark solitons",

[160] A. Ambrosetti, G. Lombardi, L. Salasnich, P.L. Silvestrelli, and F. Toigo,
"Polarization of a two dimensional repulsive Fermi gas with Rashba spin-orbit coupling",

[161] L. Barbiero, L. Salasnich, and B.A. Malomed,
"Quantum bright solitons in the Hubbard model with site-dependent repulsive interactions",

[162] L. Salasnich and F. Toigo,
"Composite bosons in the 2D BCS-BEC crossover from Gaussian fluctuations",

[163] G. Szirmai, G. Mazzarella, and L. Salasnich,
"Tunneling dynamics of bosonic Josephson junctions assisted by a cavity field",

[164] M. Galante, G. Mazzarella, and L. Salasnich,
"Analytical results on quantum entanglement of few bosons in a double-well trap with dipolar interaction",

[165] L. Salasnich and G. Bighin,
"Scattering length of composite bosons in the 3D BCS-BEC crossover",
[166] M. Rossi, F. Ancilotto, L. Salasnich, and F. Toigo,

[167] F. Sgarlata, L. Salasnich, and G. Mazzarella,

[168] G. Bighin, L. Salasnich, P.A. Marchetti, and F. Toigo,

[169] F. Ancilotto, M. Rossi, L. Salasnich, and F. Toigo,

[170] P. Rosson, G. Mazzarella, G. Szirmai, and L. Salasnich,

[171] L. Salasnich and S.K. Adhikari,

[172] G. Bighin and L. Salasnich,

[173] L. Salasnich,

[174] L. Salasnich,

[175] L. Barbiero, B.A. Malomed, and L. Salasnich,

[176] F. Baldovin, A. Cappellaro, E. Orlandini, and L. Salasnich,

[177] L. Salasnich and F. Toigo,

[178] A. Ambrosetti, L. Salasnich, and P.L. Silvestrelli,

[179] M. Pizzardo, G. Mazzarella, and L. Salasnich,

[180] L. Salasnich and G. Bighin,
[181] A. Cappellaro and L. Salasnich,
“Thermal field theory of bosonic gases with finite-range effective interaction”,

[182] L. Salasnich,
“Nonuniversal Equation of State of the Two-Dimensional Bose Gas”,

[183] G. Bighin and L. Salasnich,
“Vortices and antivortices in two-dimensional ultracold Fermi gases”,

[184] V. Penna and L. Salasnich,
“Itinerant ferromagnetism of repulsive fermions with Rabi coupling”,

[185] L. Lepori and L. Salasnich,
“Tuning zero and first sound in ultracold Fermi mixtures with Rabi coupling”,

[186] W. Cardoso, L. Salasnich, and B.A. Malomed,
“Zero-dimensional limit of the two-dimensional Lugiato-Lefever equation”,

[187] Z. Chen, Y. Li, B.A. Malomed, and L. Salasnich,
“Spontaneous symmetry breaking of fundamental states, vortices, and dipoles in two- and one-dimensional linearly coupled traps with cubic self-attractions”,

[188] A. Cappellaro, F. Macri, G. Bertacco, and L. Salasnich,
“Equation of state and self-bound droplet in Rabi-coupled Bose mixtures”,

[189] F. Cinti, A. Cappellaro, L. Salasnich, and T. Macri,
“Superfluid filaments of dipolar bosons in free space”,

[190] L. Salasnich,
“Bright solitons in ultracold atoms”,

[191] W. Cardoso, L. Salasnich, and B.A. Malomed,
“Localized Solutions of the Lugiato-Lefever equation with a focused pump”,

[192] A. Cappellaro and L. Salasnich,
“Finite-range corrections to the thermodynamics of the one-dimensional Bose gas”,

[193] Z. Denis, A. Tiene, L. Salasnich, and S. Wimberger,
“Asymmetric many-body loss in a bosonic double well”,

[194] F. Lingua, L. Lepori, F. Minardi, V. Penna, and L. Salasnich,
“Collision of impurities with Bose-Einstein condensates”,

[195] M. Faccioli and L. Salasnich,

Papers in Edited Volumes with ISBN

"Semiclassical Quantization of the Triaxial Rigid Rotator: Density of States and Spectral Statistics",

[v13] L. Salasnich,
"Condensate fraction in metallic superconductors and ultracold atomic vapors",

[v14] B.A. Malomed, L. Salasnich, and F. Toigo,
"Spontaneous symmetry-breaking in mixed superfluid of fermions and bosons rapped in double-well potentials",

[v15] L. Salasnich,

[v16] L. Salasnich,
"Fermionic condensation in ultracold atoms, nuclear matter and neutron stars",

[v17] L. Salasnich,

[v18] G. Bighin and L. Salasnich,
"Gaussian fluctuations in the two-dimensional BCS-BEC crossover: finite temperature properties",

[v19] L. Salasnich,
"Goldstone and Higgs Hydrodynamics in the BCS-BEC crossover",

[v20] F. Sattin, A. Bonato, and L. Salasnich,
Books with ISBN

[b1] L. Salasnich,
PRECORSO DI MATEMATICA CON ELEMENTI DI CALCOLO DIFFERENZIALE.
Sold copies: 120.

[b2] L. Maccone, L. Salasnich,
FISICA MODERNA. MECCANICA QUANTISTICA, CAOS E SISTEMI COMPLESSI.
Sold copies: > 500 (reprint, 2009).

[b3] L. Salasnich,
ELEMENTI DI CALCOLO DIFFERENZIALE ED INTEGRALE.
Sold copies: 176.

[b4] G. Mazzarella, L. Salasnich,
INTRODUZIONE ALLA FISICA PER LE SCIENZE BIO-MEDICHE E NATURALI.
Sold copies: 70.

[b5] L. Salasnich,
QUANTUM PHYSICS OF LIGHT AND MATTER.
A Modern Introduction to Photons, Atoms and Many-Body Systems.
Sold copies: > 500 (reprint 2016).
Impact Factors of Luca Salasnich’s publications

<table>
<thead>
<tr>
<th>Peer-Reviewed Journal</th>
<th>Impact Factor</th>
<th>Number of Articles</th>
<th>(single-authored)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phys. Rep.</td>
<td>28.295</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Phys. Rev. Lett.</td>
<td>9.227</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Riv. Nuovo Cim.</td>
<td>7.565</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Comp. Meth. Appl. Mech. Eng.</td>
<td>4.441</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Phys. Rev. D</td>
<td>4.368</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Phys. Lett. B</td>
<td>4.162</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Sci. Rep.</td>
<td>4.122</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Phys. Rev. B</td>
<td>3.836</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>New J. Phys.</td>
<td>3.773</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Phys. Rev. C</td>
<td>3.132</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>J. Struct. Geol.</td>
<td>3.128</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Eur. Phys. J. Plus</td>
<td>2.612</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Chaos</td>
<td>2.415</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>J. Stat. Mech.</td>
<td>2.371</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Phys. Rev. E</td>
<td>2.353</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Meccanica</td>
<td>2.316</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Appl. Sci.</td>
<td>2.217</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>EPL (2011)</td>
<td>2.171</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Physica Scripta</td>
<td>2.151</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Symmetry</td>
<td>2.143</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Molecular Physics</td>
<td>1.870</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Phys. Lett. A</td>
<td>1.863</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Physica D</td>
<td>1.810</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Eur. Phys. J. ST</td>
<td>1.660</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Rom. Rep. Phys.</td>
<td>1.583</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Optical Quantum Electr.</td>
<td>1.545</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>J. Low Temp. Phys.</td>
<td>1.491</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Int. J. Mod. Phys. E</td>
<td>1.386</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Mod. Phys. Lett. A</td>
<td>1.367</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Eur. Phys. J. D</td>
<td>1.331</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Laser Phys.</td>
<td>1.231</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>J. Math. Phys.</td>
<td>1.165</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>J. Sup. Nov. Magn.</td>
<td>1.130</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Few-Body Systems</td>
<td>0.874</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Int. J. Mod. Phys. B</td>
<td>0.863</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Acta Phys. Pol. A</td>
<td>0.857</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Mod. Phys. Lett. B</td>
<td>0.731</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Phys. Atom. Nucl.</td>
<td>0.458</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

TOTAL | **210** | **47**
Most cited papers of Luca Salasnich

<table>
<thead>
<tr>
<th>Paper Index</th>
<th>Citations</th>
<th>Number of authors</th>
<th>Journal</th>
<th>Citational Value</th>
<th>TOP=1—CB</th>
</tr>
</thead>
<tbody>
<tr>
<td>[57]</td>
<td>431</td>
<td>3</td>
<td>PRA 65 043614 (2002)</td>
<td>96</td>
<td>1 %</td>
</tr>
<tr>
<td>[65]</td>
<td>150</td>
<td>3</td>
<td>PRL 91 080405 (2003)</td>
<td>40</td>
<td>1 %</td>
</tr>
<tr>
<td>[73]</td>
<td>137</td>
<td>2</td>
<td>PRA 71 033625 (2005)</td>
<td>48</td>
<td>1 %</td>
</tr>
<tr>
<td>[60]</td>
<td>97</td>
<td>3</td>
<td>PRA 66 043603 (2002)</td>
<td>28</td>
<td>5 %</td>
</tr>
<tr>
<td>[30]</td>
<td>90</td>
<td>3</td>
<td>PRA 57 3180 (1998)</td>
<td>20</td>
<td>5 %</td>
</tr>
<tr>
<td>[100]</td>
<td>79</td>
<td>2</td>
<td>PRA 78 043616 (2008)</td>
<td>28</td>
<td>4 %</td>
</tr>
<tr>
<td>[55]</td>
<td>78</td>
<td>1</td>
<td>LP 12 198 (2002)</td>
<td>20</td>
<td>10 %</td>
</tr>
<tr>
<td>[34]</td>
<td>74</td>
<td>4</td>
<td>PLA 249 495 (1998)</td>
<td>16</td>
<td>20 %</td>
</tr>
<tr>
<td>[83]</td>
<td>74</td>
<td>2</td>
<td>PRA 74 053610 (2006)</td>
<td>24</td>
<td>5 %</td>
</tr>
<tr>
<td>[76]</td>
<td>63</td>
<td>3</td>
<td>PRA 72 023621 (2005)</td>
<td>20</td>
<td>7 %</td>
</tr>
<tr>
<td>[101]</td>
<td>62</td>
<td>2</td>
<td>PRA 78 053626 (2008)</td>
<td>28</td>
<td>5 %</td>
</tr>
<tr>
<td>[147]</td>
<td>54</td>
<td>2</td>
<td>PRA 87 063625 (2013)</td>
<td>28</td>
<td>5 %</td>
</tr>
<tr>
<td>[74]</td>
<td>52</td>
<td>7</td>
<td>PRL 94 084101 (2005)</td>
<td>16</td>
<td>26 %</td>
</tr>
<tr>
<td>[104]</td>
<td>50</td>
<td>3</td>
<td>PRA 79 033627 (2009)</td>
<td>28</td>
<td>9 %</td>
</tr>
<tr>
<td>[128]</td>
<td>49</td>
<td>3</td>
<td>PRA 84 033633 (2011)</td>
<td>32</td>
<td>4 %</td>
</tr>
<tr>
<td>[112]</td>
<td>46</td>
<td>2</td>
<td>PRA 80 023606 (2009)</td>
<td>20</td>
<td>10 %</td>
</tr>
<tr>
<td>[50]</td>
<td>46</td>
<td>4</td>
<td>JPB 33 3943 (2000)</td>
<td>12</td>
<td>11 %</td>
</tr>
<tr>
<td>[53]</td>
<td>43</td>
<td>3</td>
<td>PRA 64 023601 (2001)</td>
<td>12</td>
<td>15 %</td>
</tr>
<tr>
<td>[71]</td>
<td>43</td>
<td>1</td>
<td>PRA 70 053617 (2004)</td>
<td>16</td>
<td>10 %</td>
</tr>
<tr>
<td>[158]</td>
<td>41</td>
<td>3</td>
<td>PRA 90 033629 (2014)</td>
<td>28</td>
<td>5 %</td>
</tr>
<tr>
<td>[56]</td>
<td>41</td>
<td>2</td>
<td>PRE 65 035106 (2002)</td>
<td>12</td>
<td>14 %</td>
</tr>
<tr>
<td>[96]</td>
<td>40</td>
<td>2</td>
<td>PRA 77 033618 (2008)</td>
<td>20</td>
<td>14 %</td>
</tr>
<tr>
<td>[37]</td>
<td>39</td>
<td>3</td>
<td>PRA 59 2990 (1999)</td>
<td>8</td>
<td>20 %</td>
</tr>
<tr>
<td>[127]</td>
<td>38</td>
<td>4</td>
<td>PRA 83 053607 (2011)</td>
<td>20</td>
<td>14 %</td>
</tr>
<tr>
<td>[59]</td>
<td>38</td>
<td>3</td>
<td>JPB 35 3205 (2002)</td>
<td>12</td>
<td>15 %</td>
</tr>
<tr>
<td>[98]</td>
<td>37</td>
<td>3</td>
<td>PRA 77 043609 (2008)</td>
<td>20</td>
<td>10 %</td>
</tr>
<tr>
<td>[80]</td>
<td>37</td>
<td>3</td>
<td>PRA 73 065601 (2006)</td>
<td>16</td>
<td>11 %</td>
</tr>
<tr>
<td>[119]</td>
<td>37</td>
<td>4</td>
<td>PRA 81 053630 (2010)</td>
<td>16</td>
<td>10 %</td>
</tr>
<tr>
<td>[69]</td>
<td>36</td>
<td>3</td>
<td>PRA 69 045601 (2004)</td>
<td>12</td>
<td>15 %</td>
</tr>
<tr>
<td>[70]</td>
<td>36</td>
<td>3</td>
<td>PRA 70 013604 (2004)</td>
<td>12</td>
<td>15 %</td>
</tr>
<tr>
<td>[109]</td>
<td>35</td>
<td>5</td>
<td>JPB 42 125301 (2009)</td>
<td>16</td>
<td>10 %</td>
</tr>
<tr>
<td>[102]</td>
<td>35</td>
<td>2</td>
<td>NJP 11 023011 (2009)</td>
<td>16</td>
<td>10 %</td>
</tr>
<tr>
<td>[41]</td>
<td>35</td>
<td>1</td>
<td>JIMPB 14 1 (2000)</td>
<td>8</td>
<td>30 %</td>
</tr>
<tr>
<td>[39]</td>
<td>34</td>
<td>3</td>
<td>PRA 60 4171 (1999)</td>
<td>8</td>
<td>25 %</td>
</tr>
</tbody>
</table>

Data of ISI Web of Science - Thomson Reuters Corporation - All Databases.

Citational value \(= 4 \times \text{Ceiling} \left[\text{Number of Citations per year} \right] \)

My contemporary \(h \)-index \(h_c = 18 \), i.e. there are 18 papers with a “citational value” equal or greater than 18.

Citation Benchmarking (CB), compared to articles of the same age and scientific field, is obtained from Scopus - Elsevier.
BIBLIOGRAPHIC INDICATORS OF LUCA SALASNICH
FOR PAPERS IN ISI-INDEXED SCIENTIFIC JOURNALS

Number of papers
Total number of papers in ISI-indexed scientific journals: \(p = 208 \).
Number of papers in ISI-indexed scientific journals in the last 10 years (2009-2018): 100.
Number of years from the first publication (1992-2018): \(y = 25 \).

Citations
Total number of ISI citations: \(c = 4040 \).
Average number of ISI citations per article: \(c/p = 19 \).
Average number of ISI citations per year: \(c/y = 140 \).
Number of papers in the TOP 1% of Physics/Astronomy: 3.
Number of papers in the TOP 5% of Physics/Astronomy: 14.
Number of papers in the TOP 10% of Physics/Astronomy: 23 (2 single-authored).

Impact factor (IF)
Number of papers with IF \(\geq 3 \): 32 (5 single-authored).
Number of papers with \(2 \leq IF < 3 \): 115 (14 single-authored).
Number of papers with \(1 \leq IF < 2 \): 41 (18 single-authored).

Hirsch: h-index and m-index
h-index with ISI data: \(h = 35 \).
m-index with ISI data: \(m = h/y = 1.32 \).
Contemporary h-index: \(h_c = 17 \).
h-index in the last 10 years (2009-2018): \(h_{lt} = 21 \).

Individual scientific production
Total number of single-authored papers: \(s = 47 \).
Fraction of single-authored papers: \(s/p = 0.24 \).
Single-authored papers per year: \(s/y = 1.7 \).
Number of single-authored papers in the last 10 years: 20.
h-index of single-authored papers: \(h_{sa} = 15 \).

ISI Data (All Databases) from Web of Science (WoS) of Thomson Reuters Corporation.

Padova, July 11, 2019