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Discovery of superfluidity (I)

Superfluidity is the characteristic property of a fluid with zero viscosity,
which therefore flows without loss of kinetic energy.

Superfluidity was discovered in 1937 by Pyotr Kapitza, John Allen and
Don Misener, who found that, at atmospheric pressure, below Tλ = 2.16
Kelvin helium 4 (4He) not only remains liquid but it also shows zero
viscosity. As show in the figure, at Tλ the specific heat diverges.



Discovery of superfluidity (II)

In 1938 Fritz London gave a first theoretical explanation of the
superfluidity of helium 4 on the basis of Bose-Einstein condensation
(BEC).
However, Lev Landau in 1941 was able to describe the superfluidity
without using explicitly the BEC. Within the two-fluid model of
Tisza-Landau, below Tλ Helium 4 is characterized by a inviscid superfluid
component and a viscous normal component. At zero temperature only
the superfluid component remains and the equations of superfluid
hydrodynamics are

∂

∂t
n + ∇ · (n v) = 0 ,

m
∂

∂t
v + ∇

[
1

2
mv2 + U(r) + µ(n)

]
= 0 ,

where n(r, t) is the local number density and v(r, t) is the local velocity.
U(r) is the external potential and µ(n) is the chemical potential. These
equations describe extremely well the superfluid 4He, ultracold gases of
alkali-metal atoms, and also several properties of superconductors.



Discovery of superfluidity (II)

In the 1950s Lars Onsager, Richard Feynman, and Alexei Abrikosov
suggested that superconductors and superfluids can have quantized
vortices.
In a vortex line, the number density n(r) is zero on the line (vortex core)
and around the line the velocity is quantized:

n(R) ' n(∞)

(
1− 1

1 + R2

ξ2

)
and v(R) =

~
m

k

R
,

with R the distance from the vortex line and k an integer quantum
number.
Quantized vortices have been experimentally observed in superfluid
Helium 4, in superfluid Helium 3, in superconductors, and also in atomic
BECs.1

1In 1995 Eric Cornell, Carl Wieman e Wolfgang Ketterle achieved the
Bose-Einstein condensation cooling gases of alkali-metal atoms (87Rb and 23Na). For
these bosonic systems, which are very dilute and ultracold, the critical temperature to
reach the BEC is about Tc ' 100 nanoKelvin.



Superfluid hydrodynamics (I)

The zero-temperature time-dependent Gross-Pitaevskii equation

i~
∂

∂t
ψ(r, t) =

[
− ~2

2m
∇2 + U(r) + (N − 1)g |ψ(r, t)|2

]
ψ(r, t) . (1)

can be rewritten as the equations of superfluid hydrodynamics. In fact,
setting

N1/2ψ(r, t) = n(r, t)1/2 e iθ(r,t) , (2)

and inserting this formula into Eq. (1) one finds

∂

∂t
n + ∇ · (n v) = 0 , (3)

m
∂

∂t
v + ∇

[
1

2
mv2 + U(r) + g(1− 1

N
) n − ~2

2m

∇2
√
n√

n

]
= 0 , (4)

where n(r, t) is the local number density and

v(r, t) =
~
m
∇θ(r, t) (5)

is the local velocity field, that is (by definition) irrotational, i.e. such that

∇ ∧ v = 0 . (6)



Superfluid hydrodynamics (II)

For a rotational and viscous fluid with quite generic zero-temperature
equation of state µ(n,∇n,∇2n, ...) the equations of viscous
hydrodynamics are given by

∂

∂t
n + ∇ · (n v) = 0

m
∂

∂t
v + ∇

[
1

2
mv2 + U(r) + µ(n,∇n,∇2n, ...)

]
= η∇2v + mv ∧ (∇ ∧ v)

where η is the viscosity and a rotational term appears. These equations
are called zero-temperature Navier-Stokes equations. Any generic fluid
(in the collisional regime) satisfies these equations.
Clearly, we recover the Gross-Pitaevskii superfluid hydrodynamics with

µ(n,∇n,∇2n, ...) = g(1− 1

N
) n − ~2

2m

∇2
√
n√

n
,

η = 0 ,

∇ ∧ v = 0 .



Superfluid hydrodynamics (III)

Within the Gross-Pitaevskii superfluid hydrodynamics quantum effects
are encoded not only in the equation of state but also into the properties
of the local field v(r, t):
it is proportional to the gradient of a scalar field, θ(r, t), that is the angle
of the phase of the single-valued complex wavefunction ψ(r, t).

Consequently, v(r, t) satisfies the equation∮
C
v · dr =

~
m

∮
C
∇θ · dr =

~
m

∮
C
dθ =

~
m

2π k (7)

for any closed contour C, with k an integer number. In other words, the
circulation is quantized in units of ~/m, and this property is strictly
related to the existence of quantized vortices.



Bogoliubov spectrum (I)

We have seen that the time-dependent Gross-Pitaevskii equation can be
rewritten in terms of hydrodynamic equations

∂

∂t
n + ∇ · (n v) = 0 , (8)

m
∂

∂t
v + ∇

[
1

2
mv2 + U(r) + g(1− 1

N
) n − ~2

2m

∇2
√
n√

n

]
= 0 . (9)

Let us consider Eqs. (8) and (9) assuming that U(r) = 0. We set

n(r, t) = neq + δn(r, t) , (10)

v(r, t) = 0 + δv(r, t) , (11)

where δn(r, t) and δv(r, t) represent small variations with respect to the
uniform and constant stationary configuration neq.



Bogoliubov spectrum (II)

In this way, neglecting quadratic terms in the variations (linearization)
from Eqs. (8) and (9) we get the linear equations of motion

∂

∂t
δn + neq∇ · δv = 0 , (12)

∂

∂t
δv +

c2
s

neq
∇δn − ~2

4m2neq
∇(∇2δn) = 0 , (13)

where cs is the zero-temperature sound velocity of the bosonic superfluid,
given by

mc2
s = g(1− 1

N
) neq . (14)

The linear equations of motion can be arranged in the form of the
following wave equation[ ∂2

∂t2
− c2

s∇2 +
~2

4m2
∇4
]
δn(r, t) = 0 . (15)



Bogoliubov spectrum (III)

The wave equation (15) admits monochromatic plane-wave solutions,
where the frequency ω and the wave vector q are related by the
dispersion formula ω = ω(q) given by

~ω(q) =

√
~2q2

2m

(~2q2

2m
+ 2mc2

s

)
. (16)

This is the so-called Bogoliubov spectrum of elementary excitations.
Notice that the Bogoliubov spectrum becomes the phonon spectrum

ω(q) = cs q (17)

in the regime q � 2mcs/~ of a small wavenumber q.



Landau criterion (I)

According to Lev Landau a superfluid is characterized by quasi-particles
with a dispersion relation E (p) that is not the one of free particles, i.e.
E (p) = p2/(2m). Indeed, for weakly-interacting bosons we have found
the dispersion relation

E (p) =

√
p2

2m

( p2

2m
+ 2mc2

s

)
, (18)

which becomes the phonon spectrum E (q) = csp for a small linear
momentum p = ~q, with cs the Bogoliubov speed of sound.
Let us consider a macroscopic particle of mass M that is moving with
velocity v inside the superfluid. The Landau criterion says that the
macroscopic particle is braked by the superfluid only if the modulus v of
the velocity of the macroscopic particle is larger than the critical velocity

vc = minp

(
E (p)

p

)
. (19)

Clearly, in the case of the Bogoliubov spectrum one finds vc = cs , while
for the free-particle spectrum one gets vc = 0.



Landau criterion (II)

The Landau criterion is a consequence of the laws of conservation of
linear momentum and energy in the scattering between the macroscopic
particle of mass M and one quasi-particle of the superfluid:

1

2
Mv2 =

1

2
M(v ′)2 + E (p) , (20)

Mv = Mv′ + p , (21)

where before the collision the energy and momentum of the quasi-particle
are zero. Combining the two equations one finds

v · p = E (p) +
p2

2M
. (22)

If the mass M is extremely large one gets

v =
E (p)

p cos (α)
, (23)

where α is the angle between p and v. The equality (23) holds only if v
is larger than the minimum of E (p)/p for any choice of p.



Superfluid density (I)

The quasi-particles with energy spectrum E (p) play a crucial role in the
two-fluid model of Lev Landau (1941), inspired by similar models of Lazlo
Tisza (1938) for superfluids, Fritz London and Heinz London (1935) for
superconductors.
According to the two-fluid model, at thermal equilibrium the superfluid
system is characterized by the total number density

n = ns + nn , (24)

where ns is the superfluid number density and nn is the normal number
density.
At temperature T , in the rest frame of the superfluid, the normal current
density of mass is given by

jn = mnnv =

∫
d3p

(2π~)3
p fB(E (p)− p · v) , (25)

where v is the velocity of the normal fluid and fB(E ) = 1
eE/(kBT )−1

is the

Bose distribution.



Superfluid density (II)

Assuming a small velocity v and Taylor-expanding the previous formula
with respect to v to the first order one finds

nn(T ) = −1

3

∫
d3p

(2π~)3

p2

m

d

dE

(
1

e
E(p)
kBT − 1

)
. (26)

Thus, the thermal activation of quasi-particles increases the normal
component of the superfluid. Clearly, the superfluid density then reads

ns(T ) = n − nn(T ) = n − 1

3kBT

∫
d3p

(2π~)3

p2

m

e
E(p)
kBT(

e
E(p)
kBT − 1

)2
(27)

and the critical temperature Tc of the superfluid-normal phase transition
is obtained setting ns(Tc) = 0.
Usually, in three spatial dimensions one finds Tc = TBEC . However, in
two spatial dimensions, for interacting bosons Tc 6= TBEC = 0. Moreover,
in one spatial dimension, for interacting bosons Tc 6= 0 while TBEC does
not exist.


