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Basic superconductivity (I)

Superconductivity is a phenomenon of exactly zero electrical resistance
and expulsion of magnetic flux fields occurring in certain materials when
cooled below a characteristic critical temperature Tc .
It was discovered in 1911 by Heike Kamerlingh Onnes.

In 1957 John Bardeen, Leon Cooper and Robert Schrieffer suggested
that in superconductivity, due to the ionic lattice, pairs of electrons
behave like bosons, as somehow anticipated in 1950 by Lev Landau and
Vitaly Ginzburg.



Basic superconductivity (II)

Critical temperature Tc of some superconductors at atmospheric pressure.

Materiale Symbol Tc (Kelvin)

Aluminium 27
13Al 1.19

Tin 120
50 Sn 3.72

Mercury 202
80 Hg 4.16

Lead 208
82 Pb 7.20

Neodymium 142
60 Nb 9.30

In 1986 Karl Alex Müller and Johannes Georg Bednorz discovered
high-Tc superconductors. These ceramic materials (cuprates) can reach
the critical temperature of 133 Kelvin.

For these high-Tc superconductors the mechanisms which give rise to
pairing of electrons are not fully understood.



Basic superconductivity (III)

Superconductors have interesting properties. For instance the levitation
of a magnetic material over a supercondutor (Meissner effect).

Some technological applications of superconductors:
– MAGLEV trains, based on magnetic levitation (mag-lev);
– SQUIDS, devices which measure extremely week mgnetic fields;
– very high magnetic fields for Magnetic Resonance in hospitals.



Ginzburg-Landau phenomenological theory (I)

In 1950, seven years before the Bardeen-Cooper-Schrieffer (BCS) theory1,
Lev Landau and Vitaly Ginzburg proposed2 a phenomenological approach
to describe the superconducting phase transition. The main idea is that,
close to the critical temperature, the Helmholtz free energy of a
superconducting material can be written as

F = Fn + Fs , (1)

where Fn is the contribution due to the normal component and Fs is the
contibution due to the emergence of a superconducting complex order
parameter ψ below a critical temperature. Ginzburg and Landau used the
words ψ-theory to indicate their phenomenological theory.

1J. Bardeen, L.N. Cooper, and J.R. Schrieffer, Phys. Rev. 106, 162(1957).
2V.L. Ginzburg and L.D. Landau, Zh. Eksp. Teor. Fiz. 20, 1064 (1950).



Ginzburg-Landau phenomenological theory (II)

Within the Ginzburg-Landau approach, for a D-dimensional system of
volume LD , the super component Fs is given by

Fs =

∫
LD

dDr

{
a(T ) |ψ(r)|2 +

b

2
|ψ(r)|4 + γ |∇ψ(r)|2

}
, (2)

where
a(T ) = α kB (T − Tc) (3)

is a parameter which depends on the temperature T (kB is the
Boltzmann constant) and becomes zero at the mean-field critical
temperature Tc , while b > 0 and γ > 0 are temperature-independent
phenomenological parameters.



Ginzburg-Landau phenomenological theory (III)

Assuming a real and uniform order parameter, i.e.

ψ(r) = ψ0 , (4)

the energy functional (2) with Eqs. (3) and (4) becomes

Fs0

LD
= a(T )ψ2

0 +
b

2
ψ4

0 . (5)

Minimizing Fs0 with respect to ψ0 one immediately finds

a(T )ψ0 + b ψ3
0 = 0 , (6)

and consequently

ψ0 =

{
0 for T ≥ Tc√
− a(T )

b =
√

αkB (Tc−T )
b for T < Tc

. (7)

Thus, the uniform order parameter ψ0 becomes different from zero only
below the mean-field critical temperature Tc .



Ginzburg-Landau phenomenological theory (IV)

Potential energy the Ginzburg-Landau theory with T < Tc , which is the
typical energy landscape of second-order phase transitions: from Landau
to Higgs.



Ginzburg-Landau vs Bardeen-Cooper-Schrieffer

In 1959 Lev Gor’kov showed that the phenomenological Ginzburg-Landau
theory can be deduced from the microscopic theory of
Bardeen-Cooper-Schrieffer (BCS, 1957). In particular, the order
parameter ψ0 can be identified with the BCS energy gap ∆0, while the
coefficients α, b and γ of the Ginzburg-Landau energy functional (2) are
directly related to the parameters of the BCS Hamiltonian.

We notice, however, that the Ginzburg-Landau theory is somehow better
than the the mean-field BCS theory because, in general, the
Ginzburg-Landau order parameter ψ(r) is not uniform, while the
mean-field BEC energy gap ∆0 is assumed to be uniform.



Ginzburg-Landau equation

Let us now consider the effects of a space-dependent Ginzburg-Landau
order parameter ψ(r). Extremizing the functional (2) with respect to
ψ∗(r) one gets the Euler-Lagrange equation

−γ∇2ψ + a(T )ψ + b |ψ|2ψ = 0 . (8)

This equation is called Ginzburg-Landau equation, and it is formally
equivalent to the zero-temperature Gross-Pitaevskii equation with the
following identifications:

γ → ~2

2m∗ , (9)

a(T ) → −µ , (10)

b → g . (11)

Here m∗ > 0 is the effective mass of the particles described by the order
parameter, and ~ is the reduced Planck constant.
The connection with the BCS theory gives

m∗ = 2me , (12)

where me is the mass of the electron.



Coupling with the magnetic field (I)

In general, to describe superconductors we must take into account also
the coupling with the electromagnetic field. The minimal coupling reads

−i~∇→ −i~∇− qA(r) (13)

where A(r) is the vector potential, q is the charge of each of the
composite bosonic-like particles described by the field ψ(r), and i =

√
−1

is the imaginary unit. Thus, the Ginzburg-Landau functional becomes

Fs =

∫
LD

dDr
{
a(T ) |ψ(r)|2 +

b

2
|ψ(r)|4

+
~2

2m∗ |
(
∇− i

q

~
A(r)

)
ψ(r)|2 +

1

2µ0
|B(r)|2

}
, (14)



Coupling with the magnetic field (II)

where
B(r) = ∇ ∧ A(r) (15)

is the space-dependent magnetic field.
The last term in Eq. (14) takes into account the free magnetic energy of
the system with µ0 the magnetic permeability, assumed to be the vacuum
one.
The minimization of the functional Fs = Fs [ψ(r),A(r)] with respect to
ψ∗(r) gives the so-called Ginzburg-Landau equation[

− ~2

2m∗

(
∇− i

q

~
A(r)

)2

+ a(T ) + b |ψ(r)|2
]
ψ(r) = 0 , (16)

that is a nonlinear Schrödinger equation with cubic nonlinearity for the
order parameter ψ(r), which contains the minimal coupling with the
vector potential A(r).



Coupling with the magnetic field (III)

The supercurrent charge density js(r) can be obtained by considering the
minimization of the functional Fs = Fs [ψ(r),A(r)] with respect to A(r).
In this way one finds

1

µ0
∇ ∧ B(r) = i

q~2

2m∗ (ψ∗(r)∇ψ(r)− ψ(r)∇ψ∗(r))− q2

m∗ |ψ(r)|2A(r) .

(17)
Remarkably, Eq. (17) can be rewritten as the familiar Ampere equation

∇ ∧ B(r) = µ0 js(r) (18)

setting

js(r) = i
q~

2m∗ (ψ∗(r)∇ψ(r)− ψ(r)∇ψ∗(r))− q2

m∗ |ψ(r)|2A(r) , (19)

which is identified as the supercurrent charge density.



Coupling with the magnetic field (IV)

Taking into account that the order parameter ψ(r) describes bosons, with
effective mass m∗ and effective charge q, which are made of Cooper pairs
(two electrons with opposite spin), we set

q = −2e (20)

m∗ = 2me (21)

where −e is the negative electric charge of the electron (with e > the
electric charge of the proton) and me the mass of the electron. We also
introduce, in full generality, the superfluid local number density of
electrons as

ns(r) = 2|ψ(r)|2 . (22)



London penetration depth (I)

Assuming a real and uniform order parameter, see Eq. (4), the
supercurrent is strongly simplified and reads

js(r) = − q2

m∗ψ
2
0A(r) . (23)

Clearly, from Eq. (22), in the case of a uniform and real order parameter
we have

ns = 2ψ2
0 =

{
0 for T ≥ Tc
2αkB (Tc−T )

b for T < Tc
. (24)

In addition, using Eqs. (20), (21), and (23), the supercurrent can be
rewritten as

js(r) = −e2ns
me

A(r) . (25)

This is the London equation, obtained for the first time by the London
brothers in 1935.



London penetration depth (II)

The curl of the Ampere equation (18) gives

−∇2B(r) = µ0 ∇ ∧ js(r) , (26)

taking into account that

∇ ∧ (∇ ∧ B) = −∇2B + ∇(∇ · B) = −∇2B (27)

due to the magnetic Gauss law

∇ · B = 0 . (28)

Inserting Eq. (25) into Eq. (26), and using Eq. (15), we get

∇2B(r) =
e2nsµ0

me
B(r) . (29)



London penetration depth (III)

Assuming that B = B(x) the previous equation can be written as

∂2

∂x2
B(x) =

e2nsµ0

me
B(x) (30)

which has the following physically relevant solution for x ≥ 0:

B(x) = B(0) e−x/λL , (31)

where

λL =

√
me

e2nsµ0
(32)

is the so-called London penetration depth. The meaning of Eq. (31) is
that inside a superconductor the magnetic field decays exponentially.
This is the Meissner-Ochsenfeld effect: the expulsion of a magnetic field
from a superconductor, experimentally observed for the first time in 1933.



London penetration depth (IV)



Coherence length and quantized vortices (I)

A very important characteristic length of the Ginzburg-Landau equation
is the so-called coherence length

ξ =

√
~2

2m∗|a(T )|
. (33)

This is the distance at which there is a compensation between the
gradient term and the linear term of the Ginzburg-Landau equation:

| − ~2

2m∗∇
2ψ| ' ~2

2m∗ξ2
|ψ| = |a(T )||ψ| . (34)

Alexei Abrikosov in 1957 showed that the coherence length ξ is nothing
else than the healing length of the quantized vortices of the
Ginzburg-Landau equation.
Invoking the presence of quantized vortices Abrikosov explaned type-II
superconductors, which were discovered by Rjabinin and Shubnikov in
1935.



Coherence length and quantized vortices (II)



Coherence length and quantized vortices (III)

Following an earlier intuition of Ginzburg and Landau, by solving the
Ginzburg–Landau equation Abrikosov found that a type-II superconductor
appears when

λL
ξ
>

1√
2
' 0.7071 , (35)

where λL is the London penetration depth and ξ is the coherence length.
Under this condition, there is the formation of Abrikosov quantized
vortices and the magnetic field can penetrate deep inside the
superconductor.
Abrikosov found that the vortices arrange themselves into a regular array
known as a vortex lattice. A similar analysis was done for the problem of
vortex state in a rotating superfluid by Lars Onsager and Richard
Feynman.



Coherence length and quantized vortices (IV)

Vortices in a YBCO film imaged by scanning the intensity of the magnetic
field with SQUID microscopy [F.S. Wells et al, Sci Rep. 5, 8677 (2015)].



Coherence length and quantized vortices (V)

Taking into account that for T < Tc we have

λL =

√
me

e2µ0ns
=

√
meb

2e2µ0αkB(Tc − T )
(36)

and

ξ =

√
~2

4me |a(t)|
=

√
~2

4meαkB(Tc − T )
, (37)

it follows that

κ =
λL
ξ

=
me

e

√
2b

µ0
. (38)



Coherence length and quantized vortices (VI)


